ComfyUI/comfy_extras/nodes_train.py

649 lines
23 KiB
Python
Raw Normal View History

import datetime
import io
import json
import math
import os
import matplotlib.pyplot as plt
import numpy as np
import safetensors
import torch
from PIL import Image, ImageDraw, ImageFont
from PIL.PngImagePlugin import PngInfo
import comfy
import comfy_extras
import folder_paths
import node_helpers
from comfy.cli_args import args
from comfy.comfy_types.node_typing import IO
from nodes import LoadImage
class TrainSampler(comfy.samplers.Sampler):
def __init__(self, loss_fn, optimizer, loss_callback=None):
self.loss_fn = loss_fn
self.optimizer = optimizer
self.loss_callback = loss_callback
def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
self.optimizer.zero_grad()
noise = model_wrap.inner_model.model_sampling.noise_scaling(sigmas, noise, latent_image, False)
latent = model_wrap.inner_model.model_sampling.noise_scaling(
torch.zeros_like(sigmas),
torch.zeros_like(noise, requires_grad=True),
latent_image,
False
)
# Ensure model is in training mode and computing gradients
denoised = model_wrap(noise, sigmas, **extra_args)
try:
loss = self.loss_fn(denoised, latent.clone())
except RuntimeError as e:
if "does not require grad and does not have a grad_fn" in str(e):
print("WARNING: This is likely due to the model is loaded in inference mode.")
loss.backward()
print(f"Current Training Loss: {loss.item():.6f}")
if self.loss_callback:
self.loss_callback(loss.item())
self.optimizer.step()
# torch.cuda.memory._dump_snapshot("trainn.pickle")
# torch.cuda.memory._record_memory_history(enabled=None)
return torch.zeros_like(latent_image)
class BiasDiff(torch.nn.Module):
def __init__(self, bias):
super().__init__()
self.bias = bias
def __call__(self, b):
return b + self.bias
def passive_memory_usage(self):
return self.bias.nelement() * self.bias.element_size()
def move_to(self, device):
self.to(device=device)
return self.passive_memory_usage()
class LoraDiff(torch.nn.Module):
def __init__(self, lora_down, lora_up):
super().__init__()
self.lora_down = lora_down
self.lora_up = lora_up
def __call__(self, w):
return w + (self.lora_up @ self.lora_down).reshape(w.shape)
def passive_memory_usage(self):
return self.lora_down.nelement() * self.lora_down.element_size() + self.lora_up.nelement() * self.lora_up.element_size()
def move_to(self, device):
self.to(device=device)
return self.passive_memory_usage()
def load_and_process_images(image_files, input_dir, resize_method="None"):
"""Utility function to load and process a list of images.
Args:
image_files: List of image filenames
input_dir: Base directory containing the images
resize_method: How to handle images of different sizes ("None", "Stretch", "Crop", "Pad")
Returns:
torch.Tensor: Batch of processed images
"""
if not image_files:
raise ValueError(f"No valid images found in input")
output_images = []
w, h = None, None
for file in image_files:
image_path = os.path.join(input_dir, file)
img = node_helpers.pillow(Image.open, image_path)
if img.mode == "I":
img = img.point(lambda i: i * (1 / 255))
img = img.convert("RGB")
if w is None and h is None:
w, h = img.size[0], img.size[1]
# Resize image to first image
if img.size[0] != w or img.size[1] != h:
if resize_method == "Stretch":
img = img.resize((w, h), Image.Resampling.LANCZOS)
elif resize_method == "Crop":
img = img.crop((0, 0, w, h))
elif resize_method == "Pad":
img = img.resize((w, h), Image.Resampling.LANCZOS)
elif resize_method == "None":
raise ValueError(
"Your input image size does not match the first image in the dataset. Either select a valid resize method or use the same size for all images."
)
img_array = np.array(img).astype(np.float32) / 255.0
img_tensor = torch.from_numpy(img_array)[None,]
output_images.append(img_tensor)
return torch.cat(output_images, dim=0)
class LoadImageSetNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": (
[
f
for f in os.listdir(folder_paths.get_input_directory())
if f.endswith((".png", ".jpg", ".jpeg", ".webp"))
],
{"image_upload": True, "allow_batch": True},
)
},
"optional": {
"resize_method": (
["None", "Stretch", "Crop", "Pad"],
{"default": "None"},
),
},
}
INPUT_IS_LIST = True
RETURN_TYPES = ("IMAGE",)
FUNCTION = "load_images"
CATEGORY = "loaders"
EXPERIMENTAL = True
DESCRIPTION = "Loads a batch of images from a directory for training."
@classmethod
def VALIDATE_INPUTS(s, images, resize_method):
filenames = images[0] if isinstance(images[0], list) else images
for image in filenames:
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True
def load_images(self, input_files, resize_method):
input_dir = folder_paths.get_input_directory()
valid_extensions = [".png", ".jpg", ".jpeg", ".webp"]
image_files = [
f
for f in input_files
if any(f.lower().endswith(ext) for ext in valid_extensions)
]
output_tensor = load_and_process_images(image_files, input_dir, resize_method)
return (output_tensor,)
class LoadImageSetFromFolderNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"folder": (folder_paths.get_input_subfolders(), {"tooltip": "The folder to load images from."})
},
"optional": {
"resize_method": (
["None", "Stretch", "Crop", "Pad"],
{"default": "None"},
),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "load_images"
CATEGORY = "loaders"
EXPERIMENTAL = True
DESCRIPTION = "Loads a batch of images from a directory for training."
def load_images(self, folder, resize_method):
sub_input_dir = os.path.join(folder_paths.get_input_directory(), folder)
valid_extensions = [".png", ".jpg", ".jpeg", ".webp"]
image_files = [
f
for f in os.listdir(sub_input_dir)
if any(f.lower().endswith(ext) for ext in valid_extensions)
]
output_tensor = load_and_process_images(image_files, sub_input_dir, resize_method)
return (output_tensor,)
def draw_loss_graph(loss_map, steps):
width, height = 500, 300
img = Image.new("RGB", (width, height), "white")
draw = ImageDraw.Draw(img)
min_loss, max_loss = min(loss_map.values()), max(loss_map.values())
scaled_loss = [(l - min_loss) / (max_loss - min_loss) for l in loss_map.values()]
prev_point = (0, height - int(scaled_loss[0] * height))
for i, l in enumerate(scaled_loss[1:], start=1):
x = int(i / (steps - 1) * width)
y = height - int(l * height)
draw.line([prev_point, (x, y)], fill="blue", width=2)
prev_point = (x, y)
return img
class TrainLoraNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (IO.MODEL, {"tooltip": "The model to train the LoRA on."}),
"vae": (
IO.VAE,
{
"tooltip": "The VAE model to use for encoding images for training."
},
),
"positive": (
IO.CONDITIONING,
{"tooltip": "The positive conditioning to use for training."},
),
"image": (
IO.IMAGE,
{"tooltip": "The image or image batch to train the LoRA on."},
),
"batch_size": (
IO.INT,
{
"default": 1,
"min": 1,
"max": 10000,
"step": 1,
"tooltip": "The batch size to use for training.",
},
),
"steps": (
IO.INT,
{
"default": 50,
"min": 1,
"max": 1000,
"tooltip": "The number of steps to train the LoRA for.",
},
),
"learning_rate": (
IO.FLOAT,
{
"default": 0.0003,
"min": 0.0000001,
"max": 1.0,
"step": 0.00001,
"tooltip": "The learning rate to use for training.",
},
),
"rank": (
IO.INT,
{
"default": 8,
"min": 1,
"max": 128,
"tooltip": "The rank of the LoRA layers.",
},
),
"optimizer": (
["Adam", "AdamW", "SGD", "RMSprop"],
{
"default": "Adam",
"tooltip": "The optimizer to use for training.",
},
),
"loss_function": (
["MSE", "L1", "Huber", "SmoothL1"],
{
"default": "MSE",
"tooltip": "The loss function to use for training.",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"tooltip": "The seed to use for training (used in generator for LoRA weight initialization and noise sampling)",
},
),
"training_dtype": (
["bf16", "fp32"],
{"default": "bf16", "tooltip": "The dtype to use for training."},
),
"existing_lora": (
folder_paths.get_filename_list("loras") + ["[None]"],
{
"default": "[None]",
"tooltip": "The existing LoRA to append to. Set to None for new LoRA.",
},
),
},
}
RETURN_TYPES = (IO.MODEL, IO.LORA_MODEL, IO.LOSS_MAP, IO.INT)
RETURN_NAMES = ("model_with_lora", "lora", "loss", "steps")
FUNCTION = "train"
CATEGORY = "training"
EXPERIMENTAL = True
def train(
self,
model,
vae,
positive,
image,
batch_size,
steps,
learning_rate,
rank,
optimizer,
loss_function,
seed,
training_dtype,
existing_lora,
):
num_images = image.shape[0]
indices = torch.randperm(num_images)[:batch_size]
batch_tensor = image[indices]
# Ensure we're not in inference mode when encoding
encoded = vae.encode(batch_tensor)
mp = model.clone()
dtype = node_helpers.string_to_torch_dtype(training_dtype)
mp.set_model_compute_dtype(dtype)
with torch.inference_mode(False):
lora_sd = {}
generator = torch.Generator()
generator.manual_seed(seed)
# Load existing LoRA weights if provided
existing_weights = {}
existing_steps = 0
if existing_lora != "[None]":
lora_path = folder_paths.get_full_path_or_raise("loras", existing_lora)
# Extract steps from filename like "trained_lora_10_steps_20250225_203716"
existing_steps = int(existing_lora.split("_steps_")[0].split("_")[-1])
if lora_path:
existing_weights = comfy.utils.load_torch_file(lora_path)
for n, m in mp.model.named_modules():
if hasattr(m, "weight_function"):
if m.weight is not None:
key = "{}.weight".format(n)
shape = m.weight.shape
if len(shape) >= 2:
in_dim = math.prod(shape[1:])
out_dim = shape[0]
# Check if we have existing weights for this layer
lora_up_key = "{}.lora_up.weight".format(n)
lora_down_key = "{}.lora_down.weight".format(n)
if existing_lora != "[None]" and (
lora_up_key in existing_weights
and lora_down_key in existing_weights
):
# Initialize with existing weights
lora_up = torch.nn.Parameter(
existing_weights[lora_up_key].to(dtype=dtype),
requires_grad=True,
)
lora_down = torch.nn.Parameter(
existing_weights[lora_down_key].to(dtype=dtype),
requires_grad=True,
)
else:
if existing_lora != "[None]":
print(
f"Warning: No existing weights found for {lora_up_key} or {lora_down_key}"
)
# Initialize new weights
lora_down = torch.nn.Parameter(
torch.zeros(
(
rank,
in_dim,
),
dtype=dtype,
),
requires_grad=True,
)
lora_up = torch.nn.Parameter(
torch.zeros((out_dim, rank), dtype=dtype),
requires_grad=True,
)
torch.nn.init.zeros_(lora_up)
torch.nn.init.kaiming_uniform_(
lora_down, a=math.sqrt(5), generator=generator
)
lora_sd[lora_up_key] = lora_up
lora_sd[lora_down_key] = lora_down
mp.add_weight_wrapper(key, LoraDiff(lora_down, lora_up))
else:
diff = torch.nn.Parameter(
torch.zeros(
m.weight.shape, dtype=dtype, requires_grad=True
)
)
mp.add_weight_wrapper(key, BiasDiff(diff))
lora_sd["{}.diff".format(n)] = diff
if hasattr(m, "bias") and m.bias is not None:
key = "{}.bias".format(n)
bias = torch.nn.Parameter(
torch.zeros(m.bias.shape, dtype=dtype, requires_grad=True)
)
lora_sd["{}.diff_b".format(n)] = bias
mp.add_weight_wrapper(key, BiasDiff(bias))
if optimizer == "Adam":
optimizer = torch.optim.Adam(lora_sd.values(), lr=learning_rate)
elif optimizer == "AdamW":
optimizer = torch.optim.AdamW(lora_sd.values(), lr=learning_rate)
elif optimizer == "SGD":
optimizer = torch.optim.SGD(lora_sd.values(), lr=learning_rate)
elif optimizer == "RMSprop":
optimizer = torch.optim.RMSprop(lora_sd.values(), lr=learning_rate)
# Setup loss function based on selection
if loss_function == "MSE":
criterion = torch.nn.MSELoss()
elif loss_function == "L1":
criterion = torch.nn.L1Loss()
elif loss_function == "Huber":
criterion = torch.nn.HuberLoss()
elif loss_function == "SmoothL1":
criterion = torch.nn.SmoothL1Loss()
# Setup sampler and guider like in test script
loss_map = {"loss": []}
loss_callback = lambda loss: loss_map["loss"].append(loss)
train_sampler = TrainSampler(
criterion, optimizer, loss_callback=loss_callback
)
guider = comfy_extras.nodes_custom_sampler.Guider_Basic(mp)
guider.set_conds(positive) # Set conditioning from input
ss = comfy_extras.nodes_custom_sampler.SamplerCustomAdvanced()
# yoland: this currently resize to the first image in the dataset
# Training loop
for step in range(steps):
# Generate random sigma
sigma = mp.model.model_sampling.percent_to_sigma(
torch.rand((1,)).item()
)
sigma = torch.tensor([sigma])
noise = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(step * 1000 + seed)
ss.sample(
noise, guider, train_sampler, sigma, {"samples": encoded.clone()}
)
return (mp, lora_sd, loss_map, steps + existing_steps)
class SaveLoRA:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"lora": (
IO.LORA_MODEL,
{
"tooltip": "The LoRA model to save. Do not use the model with LoRA layers."
},
),
"prefix": (
"STRING",
{
"default": "trained_lora",
"tooltip": "The prefix to use for the saved LoRA file.",
},
),
},
"optional": {
"steps": (
IO.INT,
{
"forceInput": True,
"tooltip": "Optional: The number of steps to LoRA has been trained for, used to name the saved file.",
},
),
},
}
RETURN_TYPES = ()
FUNCTION = "save"
CATEGORY = "loaders"
EXPERIMENTAL = True
OUTPUT_NODE = True
def save(self, lora, prefix, steps=None):
date = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
if steps is None:
output_file = f"models/loras/{prefix}_{date}_lora.safetensors"
else:
output_file = f"models/loras/{prefix}_{steps}_steps_{date}_lora.safetensors"
safetensors.torch.save_file(lora, output_file)
return {}
class LossGraphNode:
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"loss": (IO.LOSS_MAP, {"default": {}}),
"filename_prefix": (IO.STRING, {"default": "loss_graph"}),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "plot_loss"
OUTPUT_NODE = True
CATEGORY = "training"
EXPERIMENTAL = True
DESCRIPTION = "Plots the loss graph and saves it to the output directory."
def plot_loss(self, loss, filename_prefix, prompt=None, extra_pnginfo=None):
loss_values = loss["loss"]
width, height = 500, 300
margin = 40
img = Image.new(
"RGB", (width + margin, height + margin), "white"
) # Extend canvas
draw = ImageDraw.Draw(img)
min_loss, max_loss = min(loss_values), max(loss_values)
scaled_loss = [(l - min_loss) / (max_loss - min_loss) for l in loss_values]
steps = len(loss_values)
prev_point = (margin, height - int(scaled_loss[0] * height))
for i, l in enumerate(scaled_loss[1:], start=1):
x = margin + int(i / steps * width) # Scale X properly
y = height - int(l * height)
draw.line([prev_point, (x, y)], fill="blue", width=2)
prev_point = (x, y)
draw.line([(margin, 0), (margin, height)], fill="black", width=2) # Y-axis
draw.line(
[(margin, height), (width + margin, height)], fill="black", width=2
) # X-axis
font = None
try:
font = ImageFont.truetype("arial.ttf", 12)
except IOError:
font = ImageFont.load_default()
# Add axis labels
draw.text((5, height // 2), "Loss", font=font, fill="black")
draw.text((width // 2, height + 10), "Steps", font=font, fill="black")
# Add min/max loss values
draw.text((margin - 30, 0), f"{max_loss:.2f}", font=font, fill="black")
draw.text(
(margin - 30, height - 10), f"{min_loss:.2f}", font=font, fill="black"
)
metadata = None
if not args.disable_metadata:
metadata = PngInfo()
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
date = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
img.save(
os.path.join(self.output_dir, f"{filename_prefix}_{date}.png"),
pnginfo=metadata,
)
return {
"ui": {
"images": [
{
"filename": f"{filename_prefix}_{date}.png",
"subfolder": "",
"type": "temp",
}
]
}
}
NODE_CLASS_MAPPINGS = {
"TrainLoraNode": TrainLoraNode,
"SaveLoRANode": SaveLoRA,
"LoadImageSetFromFolderNode": LoadImageSetFromFolderNode,
"LossGraphNode": LossGraphNode,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"TrainLoraNode": "Train LoRA",
"SaveLoRANode": "Save LoRA Weights",
"LoadImageSetFromFolderNode": "Load Image Dataset from Folder",
"LossGraphNode": "Plot Loss Graph",
}