mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-10 18:05:16 +00:00
42 lines
1.4 KiB
Python
42 lines
1.4 KiB
Python
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
class Mahiro:
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required": {"model": ("MODEL",),
|
||
|
}}
|
||
|
RETURN_TYPES = ("MODEL",)
|
||
|
RETURN_NAMES = ("patched_model",)
|
||
|
FUNCTION = "patch"
|
||
|
CATEGORY = "_for_testing"
|
||
|
DESCRIPTION = "Modify the guidance to scale more on the 'direction' of the positive prompt rather than the difference between the negative prompt."
|
||
|
def patch(self, model):
|
||
|
m = model.clone()
|
||
|
def mahiro_normd(args):
|
||
|
scale: float = args['cond_scale']
|
||
|
cond_p: torch.Tensor = args['cond_denoised']
|
||
|
uncond_p: torch.Tensor = args['uncond_denoised']
|
||
|
#naive leap
|
||
|
leap = cond_p * scale
|
||
|
#sim with uncond leap
|
||
|
u_leap = uncond_p * scale
|
||
|
cfg = args["denoised"]
|
||
|
merge = (leap + cfg) / 2
|
||
|
normu = torch.sqrt(u_leap.abs()) * u_leap.sign()
|
||
|
normm = torch.sqrt(merge.abs()) * merge.sign()
|
||
|
sim = F.cosine_similarity(normu, normm).mean()
|
||
|
simsc = 2 * (sim+1)
|
||
|
wm = (simsc*cfg + (4-simsc)*leap) / 4
|
||
|
return wm
|
||
|
m.set_model_sampler_post_cfg_function(mahiro_normd)
|
||
|
return (m, )
|
||
|
|
||
|
NODE_CLASS_MAPPINGS = {
|
||
|
"Mahiro": Mahiro
|
||
|
}
|
||
|
|
||
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
||
|
"Mahiro": "Mahiro is so cute that she deserves a better guidance function!! (。・ω・。)",
|
||
|
}
|