ComfyUI/comfy_extras/nodes_differential_diffusion.py

57 lines
1.8 KiB
Python
Raw Normal View History

# code adapted from https://github.com/exx8/differential-diffusion
import torch
class DifferentialDiffusion():
@classmethod
def INPUT_TYPES(s):
2024-11-22 02:02:49 +00:00
return {
"required": {
"model": ("MODEL", ),
"strength": ("FLOAT", {
"default": 1.0,
"min": 0.0,
"max": 1.0
}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply"
CATEGORY = "_for_testing"
INIT = False
2024-11-22 02:02:49 +00:00
def apply(self, model, strength=1.0):
model = model.clone()
2024-11-22 02:02:49 +00:00
model.set_model_denoise_mask_function(lambda *args, **kwargs: self.forward(*args, **kwargs, strength=strength))
return (model, )
2024-11-22 02:02:49 +00:00
def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict, strength: float):
2024-03-03 20:11:13 +00:00
model = extra_options["model"]
step_sigmas = extra_options["sigmas"]
sigma_to = model.inner_model.model_sampling.sigma_min
if step_sigmas[-1] > sigma_to:
sigma_to = step_sigmas[-1]
sigma_from = step_sigmas[0]
ts_from = model.inner_model.model_sampling.timestep(sigma_from)
ts_to = model.inner_model.model_sampling.timestep(sigma_to)
current_ts = model.inner_model.model_sampling.timestep(sigma[0])
2024-03-03 20:11:13 +00:00
threshold = (current_ts - ts_to) / (ts_from - ts_to)
2024-11-22 02:02:49 +00:00
# Generate the binary mask based on the threshold
binary_mask = (denoise_mask >= threshold).to(denoise_mask.dtype)
# Blend binary mask with the original denoise_mask using strength
blended_mask = strength * binary_mask + (1 - strength) * denoise_mask
return blended_mask
NODE_CLASS_MAPPINGS = {
"DifferentialDiffusion": DifferentialDiffusion,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DifferentialDiffusion": "Differential Diffusion",
}