mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-26 00:05:18 +00:00
456 lines
14 KiB
Python
456 lines
14 KiB
Python
|
# pylint: skip-file
|
||
|
# -----------------------------------------------------------------------------------
|
||
|
# SCUNet: Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis, https://arxiv.org/abs/2203.13278
|
||
|
# Zhang, Kai and Li, Yawei and Liang, Jingyun and Cao, Jiezhang and Zhang, Yulun and Tang, Hao and Timofte, Radu and Van Gool, Luc
|
||
|
# -----------------------------------------------------------------------------------
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from einops import rearrange
|
||
|
from einops.layers.torch import Rearrange
|
||
|
|
||
|
from .timm.drop import DropPath
|
||
|
from .timm.weight_init import trunc_normal_
|
||
|
|
||
|
|
||
|
# Borrowed from https://github.com/cszn/SCUNet/blob/main/models/network_scunet.py
|
||
|
class WMSA(nn.Module):
|
||
|
"""Self-attention module in Swin Transformer"""
|
||
|
|
||
|
def __init__(self, input_dim, output_dim, head_dim, window_size, type):
|
||
|
super(WMSA, self).__init__()
|
||
|
self.input_dim = input_dim
|
||
|
self.output_dim = output_dim
|
||
|
self.head_dim = head_dim
|
||
|
self.scale = self.head_dim**-0.5
|
||
|
self.n_heads = input_dim // head_dim
|
||
|
self.window_size = window_size
|
||
|
self.type = type
|
||
|
self.embedding_layer = nn.Linear(self.input_dim, 3 * self.input_dim, bias=True)
|
||
|
|
||
|
self.relative_position_params = nn.Parameter(
|
||
|
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads)
|
||
|
)
|
||
|
# TODO recover
|
||
|
# self.relative_position_params = nn.Parameter(torch.zeros(self.n_heads, 2 * window_size - 1, 2 * window_size -1))
|
||
|
self.relative_position_params = nn.Parameter(
|
||
|
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads)
|
||
|
)
|
||
|
|
||
|
self.linear = nn.Linear(self.input_dim, self.output_dim)
|
||
|
|
||
|
trunc_normal_(self.relative_position_params, std=0.02)
|
||
|
self.relative_position_params = torch.nn.Parameter(
|
||
|
self.relative_position_params.view(
|
||
|
2 * window_size - 1, 2 * window_size - 1, self.n_heads
|
||
|
)
|
||
|
.transpose(1, 2)
|
||
|
.transpose(0, 1)
|
||
|
)
|
||
|
|
||
|
def generate_mask(self, h, w, p, shift):
|
||
|
"""generating the mask of SW-MSA
|
||
|
Args:
|
||
|
shift: shift parameters in CyclicShift.
|
||
|
Returns:
|
||
|
attn_mask: should be (1 1 w p p),
|
||
|
"""
|
||
|
# supporting square.
|
||
|
attn_mask = torch.zeros(
|
||
|
h,
|
||
|
w,
|
||
|
p,
|
||
|
p,
|
||
|
p,
|
||
|
p,
|
||
|
dtype=torch.bool,
|
||
|
device=self.relative_position_params.device,
|
||
|
)
|
||
|
if self.type == "W":
|
||
|
return attn_mask
|
||
|
|
||
|
s = p - shift
|
||
|
attn_mask[-1, :, :s, :, s:, :] = True
|
||
|
attn_mask[-1, :, s:, :, :s, :] = True
|
||
|
attn_mask[:, -1, :, :s, :, s:] = True
|
||
|
attn_mask[:, -1, :, s:, :, :s] = True
|
||
|
attn_mask = rearrange(
|
||
|
attn_mask, "w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)"
|
||
|
)
|
||
|
return attn_mask
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""Forward pass of Window Multi-head Self-attention module.
|
||
|
Args:
|
||
|
x: input tensor with shape of [b h w c];
|
||
|
attn_mask: attention mask, fill -inf where the value is True;
|
||
|
Returns:
|
||
|
output: tensor shape [b h w c]
|
||
|
"""
|
||
|
if self.type != "W":
|
||
|
x = torch.roll(
|
||
|
x,
|
||
|
shifts=(-(self.window_size // 2), -(self.window_size // 2)),
|
||
|
dims=(1, 2),
|
||
|
)
|
||
|
|
||
|
x = rearrange(
|
||
|
x,
|
||
|
"b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c",
|
||
|
p1=self.window_size,
|
||
|
p2=self.window_size,
|
||
|
)
|
||
|
h_windows = x.size(1)
|
||
|
w_windows = x.size(2)
|
||
|
# square validation
|
||
|
# assert h_windows == w_windows
|
||
|
|
||
|
x = rearrange(
|
||
|
x,
|
||
|
"b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c",
|
||
|
p1=self.window_size,
|
||
|
p2=self.window_size,
|
||
|
)
|
||
|
qkv = self.embedding_layer(x)
|
||
|
q, k, v = rearrange(
|
||
|
qkv, "b nw np (threeh c) -> threeh b nw np c", c=self.head_dim
|
||
|
).chunk(3, dim=0)
|
||
|
sim = torch.einsum("hbwpc,hbwqc->hbwpq", q, k) * self.scale
|
||
|
# Adding learnable relative embedding
|
||
|
sim = sim + rearrange(self.relative_embedding(), "h p q -> h 1 1 p q")
|
||
|
# Using Attn Mask to distinguish different subwindows.
|
||
|
if self.type != "W":
|
||
|
attn_mask = self.generate_mask(
|
||
|
h_windows, w_windows, self.window_size, shift=self.window_size // 2
|
||
|
)
|
||
|
sim = sim.masked_fill_(attn_mask, float("-inf"))
|
||
|
|
||
|
probs = nn.functional.softmax(sim, dim=-1)
|
||
|
output = torch.einsum("hbwij,hbwjc->hbwic", probs, v)
|
||
|
output = rearrange(output, "h b w p c -> b w p (h c)")
|
||
|
output = self.linear(output)
|
||
|
output = rearrange(
|
||
|
output,
|
||
|
"b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c",
|
||
|
w1=h_windows,
|
||
|
p1=self.window_size,
|
||
|
)
|
||
|
|
||
|
if self.type != "W":
|
||
|
output = torch.roll(
|
||
|
output,
|
||
|
shifts=(self.window_size // 2, self.window_size // 2),
|
||
|
dims=(1, 2),
|
||
|
)
|
||
|
|
||
|
return output
|
||
|
|
||
|
def relative_embedding(self):
|
||
|
cord = torch.tensor(
|
||
|
np.array(
|
||
|
[
|
||
|
[i, j]
|
||
|
for i in range(self.window_size)
|
||
|
for j in range(self.window_size)
|
||
|
]
|
||
|
)
|
||
|
)
|
||
|
relation = cord[:, None, :] - cord[None, :, :] + self.window_size - 1
|
||
|
# negative is allowed
|
||
|
return self.relative_position_params[
|
||
|
:, relation[:, :, 0].long(), relation[:, :, 1].long()
|
||
|
]
|
||
|
|
||
|
|
||
|
class Block(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
input_dim,
|
||
|
output_dim,
|
||
|
head_dim,
|
||
|
window_size,
|
||
|
drop_path,
|
||
|
type="W",
|
||
|
input_resolution=None,
|
||
|
):
|
||
|
"""SwinTransformer Block"""
|
||
|
super(Block, self).__init__()
|
||
|
self.input_dim = input_dim
|
||
|
self.output_dim = output_dim
|
||
|
assert type in ["W", "SW"]
|
||
|
self.type = type
|
||
|
if input_resolution <= window_size:
|
||
|
self.type = "W"
|
||
|
|
||
|
self.ln1 = nn.LayerNorm(input_dim)
|
||
|
self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type)
|
||
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||
|
self.ln2 = nn.LayerNorm(input_dim)
|
||
|
self.mlp = nn.Sequential(
|
||
|
nn.Linear(input_dim, 4 * input_dim),
|
||
|
nn.GELU(),
|
||
|
nn.Linear(4 * input_dim, output_dim),
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = x + self.drop_path(self.msa(self.ln1(x)))
|
||
|
x = x + self.drop_path(self.mlp(self.ln2(x)))
|
||
|
return x
|
||
|
|
||
|
|
||
|
class ConvTransBlock(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
conv_dim,
|
||
|
trans_dim,
|
||
|
head_dim,
|
||
|
window_size,
|
||
|
drop_path,
|
||
|
type="W",
|
||
|
input_resolution=None,
|
||
|
):
|
||
|
"""SwinTransformer and Conv Block"""
|
||
|
super(ConvTransBlock, self).__init__()
|
||
|
self.conv_dim = conv_dim
|
||
|
self.trans_dim = trans_dim
|
||
|
self.head_dim = head_dim
|
||
|
self.window_size = window_size
|
||
|
self.drop_path = drop_path
|
||
|
self.type = type
|
||
|
self.input_resolution = input_resolution
|
||
|
|
||
|
assert self.type in ["W", "SW"]
|
||
|
if self.input_resolution <= self.window_size:
|
||
|
self.type = "W"
|
||
|
|
||
|
self.trans_block = Block(
|
||
|
self.trans_dim,
|
||
|
self.trans_dim,
|
||
|
self.head_dim,
|
||
|
self.window_size,
|
||
|
self.drop_path,
|
||
|
self.type,
|
||
|
self.input_resolution,
|
||
|
)
|
||
|
self.conv1_1 = nn.Conv2d(
|
||
|
self.conv_dim + self.trans_dim,
|
||
|
self.conv_dim + self.trans_dim,
|
||
|
1,
|
||
|
1,
|
||
|
0,
|
||
|
bias=True,
|
||
|
)
|
||
|
self.conv1_2 = nn.Conv2d(
|
||
|
self.conv_dim + self.trans_dim,
|
||
|
self.conv_dim + self.trans_dim,
|
||
|
1,
|
||
|
1,
|
||
|
0,
|
||
|
bias=True,
|
||
|
)
|
||
|
|
||
|
self.conv_block = nn.Sequential(
|
||
|
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
|
||
|
nn.ReLU(True),
|
||
|
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
conv_x, trans_x = torch.split(
|
||
|
self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1
|
||
|
)
|
||
|
conv_x = self.conv_block(conv_x) + conv_x
|
||
|
trans_x = Rearrange("b c h w -> b h w c")(trans_x)
|
||
|
trans_x = self.trans_block(trans_x)
|
||
|
trans_x = Rearrange("b h w c -> b c h w")(trans_x)
|
||
|
res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1))
|
||
|
x = x + res
|
||
|
|
||
|
return x
|
||
|
|
||
|
|
||
|
class SCUNet(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
state_dict,
|
||
|
in_nc=3,
|
||
|
config=[4, 4, 4, 4, 4, 4, 4],
|
||
|
dim=64,
|
||
|
drop_path_rate=0.0,
|
||
|
input_resolution=256,
|
||
|
):
|
||
|
super(SCUNet, self).__init__()
|
||
|
self.model_arch = "SCUNet"
|
||
|
self.sub_type = "SR"
|
||
|
|
||
|
self.num_filters: int = 0
|
||
|
|
||
|
self.state = state_dict
|
||
|
self.config = config
|
||
|
self.dim = dim
|
||
|
self.head_dim = 32
|
||
|
self.window_size = 8
|
||
|
|
||
|
self.in_nc = in_nc
|
||
|
self.out_nc = self.in_nc
|
||
|
self.scale = 1
|
||
|
self.supports_fp16 = True
|
||
|
|
||
|
# drop path rate for each layer
|
||
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))]
|
||
|
|
||
|
self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)]
|
||
|
|
||
|
begin = 0
|
||
|
self.m_down1 = [
|
||
|
ConvTransBlock(
|
||
|
dim // 2,
|
||
|
dim // 2,
|
||
|
self.head_dim,
|
||
|
self.window_size,
|
||
|
dpr[i + begin],
|
||
|
"W" if not i % 2 else "SW",
|
||
|
input_resolution,
|
||
|
)
|
||
|
for i in range(config[0])
|
||
|
] + [nn.Conv2d(dim, 2 * dim, 2, 2, 0, bias=False)]
|
||
|
|
||
|
begin += config[0]
|
||
|
self.m_down2 = [
|
||
|
ConvTransBlock(
|
||
|
dim,
|
||
|
dim,
|
||
|
self.head_dim,
|
||
|
self.window_size,
|
||
|
dpr[i + begin],
|
||
|
"W" if not i % 2 else "SW",
|
||
|
input_resolution // 2,
|
||
|
)
|
||
|
for i in range(config[1])
|
||
|
] + [nn.Conv2d(2 * dim, 4 * dim, 2, 2, 0, bias=False)]
|
||
|
|
||
|
begin += config[1]
|
||
|
self.m_down3 = [
|
||
|
ConvTransBlock(
|
||
|
2 * dim,
|
||
|
2 * dim,
|
||
|
self.head_dim,
|
||
|
self.window_size,
|
||
|
dpr[i + begin],
|
||
|
"W" if not i % 2 else "SW",
|
||
|
input_resolution // 4,
|
||
|
)
|
||
|
for i in range(config[2])
|
||
|
] + [nn.Conv2d(4 * dim, 8 * dim, 2, 2, 0, bias=False)]
|
||
|
|
||
|
begin += config[2]
|
||
|
self.m_body = [
|
||
|
ConvTransBlock(
|
||
|
4 * dim,
|
||
|
4 * dim,
|
||
|
self.head_dim,
|
||
|
self.window_size,
|
||
|
dpr[i + begin],
|
||
|
"W" if not i % 2 else "SW",
|
||
|
input_resolution // 8,
|
||
|
)
|
||
|
for i in range(config[3])
|
||
|
]
|
||
|
|
||
|
begin += config[3]
|
||
|
self.m_up3 = [
|
||
|
nn.ConvTranspose2d(8 * dim, 4 * dim, 2, 2, 0, bias=False),
|
||
|
] + [
|
||
|
ConvTransBlock(
|
||
|
2 * dim,
|
||
|
2 * dim,
|
||
|
self.head_dim,
|
||
|
self.window_size,
|
||
|
dpr[i + begin],
|
||
|
"W" if not i % 2 else "SW",
|
||
|
input_resolution // 4,
|
||
|
)
|
||
|
for i in range(config[4])
|
||
|
]
|
||
|
|
||
|
begin += config[4]
|
||
|
self.m_up2 = [
|
||
|
nn.ConvTranspose2d(4 * dim, 2 * dim, 2, 2, 0, bias=False),
|
||
|
] + [
|
||
|
ConvTransBlock(
|
||
|
dim,
|
||
|
dim,
|
||
|
self.head_dim,
|
||
|
self.window_size,
|
||
|
dpr[i + begin],
|
||
|
"W" if not i % 2 else "SW",
|
||
|
input_resolution // 2,
|
||
|
)
|
||
|
for i in range(config[5])
|
||
|
]
|
||
|
|
||
|
begin += config[5]
|
||
|
self.m_up1 = [
|
||
|
nn.ConvTranspose2d(2 * dim, dim, 2, 2, 0, bias=False),
|
||
|
] + [
|
||
|
ConvTransBlock(
|
||
|
dim // 2,
|
||
|
dim // 2,
|
||
|
self.head_dim,
|
||
|
self.window_size,
|
||
|
dpr[i + begin],
|
||
|
"W" if not i % 2 else "SW",
|
||
|
input_resolution,
|
||
|
)
|
||
|
for i in range(config[6])
|
||
|
]
|
||
|
|
||
|
self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)]
|
||
|
|
||
|
self.m_head = nn.Sequential(*self.m_head)
|
||
|
self.m_down1 = nn.Sequential(*self.m_down1)
|
||
|
self.m_down2 = nn.Sequential(*self.m_down2)
|
||
|
self.m_down3 = nn.Sequential(*self.m_down3)
|
||
|
self.m_body = nn.Sequential(*self.m_body)
|
||
|
self.m_up3 = nn.Sequential(*self.m_up3)
|
||
|
self.m_up2 = nn.Sequential(*self.m_up2)
|
||
|
self.m_up1 = nn.Sequential(*self.m_up1)
|
||
|
self.m_tail = nn.Sequential(*self.m_tail)
|
||
|
# self.apply(self._init_weights)
|
||
|
self.load_state_dict(state_dict, strict=True)
|
||
|
|
||
|
def check_image_size(self, x):
|
||
|
_, _, h, w = x.size()
|
||
|
mod_pad_h = (64 - h % 64) % 64
|
||
|
mod_pad_w = (64 - w % 64) % 64
|
||
|
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect")
|
||
|
return x
|
||
|
|
||
|
def forward(self, x0):
|
||
|
h, w = x0.size()[-2:]
|
||
|
x0 = self.check_image_size(x0)
|
||
|
|
||
|
x1 = self.m_head(x0)
|
||
|
x2 = self.m_down1(x1)
|
||
|
x3 = self.m_down2(x2)
|
||
|
x4 = self.m_down3(x3)
|
||
|
x = self.m_body(x4)
|
||
|
x = self.m_up3(x + x4)
|
||
|
x = self.m_up2(x + x3)
|
||
|
x = self.m_up1(x + x2)
|
||
|
x = self.m_tail(x + x1)
|
||
|
|
||
|
x = x[:, :, :h, :w]
|
||
|
return x
|
||
|
|
||
|
def _init_weights(self, m):
|
||
|
if isinstance(m, nn.Linear):
|
||
|
trunc_normal_(m.weight, std=0.02)
|
||
|
if m.bias is not None:
|
||
|
nn.init.constant_(m.bias, 0)
|
||
|
elif isinstance(m, nn.LayerNorm):
|
||
|
nn.init.constant_(m.bias, 0)
|
||
|
nn.init.constant_(m.weight, 1.0)
|