mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-14 11:27:00 +08:00
72 lines
2.4 KiB
Python
72 lines
2.4 KiB
Python
![]() |
# TCFG: Tangential Damping Classifier-free Guidance - (arXiv: https://arxiv.org/abs/2503.18137)
|
|||
|
|
|||
|
import torch
|
|||
|
|
|||
|
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict
|
|||
|
|
|||
|
|
|||
|
def score_tangential_damping(cond_score: torch.Tensor, uncond_score: torch.Tensor) -> torch.Tensor:
|
|||
|
"""Drop tangential components from uncond score to align with cond score."""
|
|||
|
# (B, 1, ...)
|
|||
|
batch_num = cond_score.shape[0]
|
|||
|
cond_score_flat = cond_score.reshape(batch_num, 1, -1).float()
|
|||
|
uncond_score_flat = uncond_score.reshape(batch_num, 1, -1).float()
|
|||
|
|
|||
|
# Score matrix A (B, 2, ...)
|
|||
|
score_matrix = torch.cat((uncond_score_flat, cond_score_flat), dim=1)
|
|||
|
try:
|
|||
|
_, _, Vh = torch.linalg.svd(score_matrix, full_matrices=False)
|
|||
|
except RuntimeError:
|
|||
|
# Fallback to CPU
|
|||
|
_, _, Vh = torch.linalg.svd(score_matrix.cpu(), full_matrices=False)
|
|||
|
|
|||
|
# Drop the tangential components
|
|||
|
v1 = Vh[:, 0:1, :].to(uncond_score_flat.device) # (B, 1, ...)
|
|||
|
uncond_score_td = (uncond_score_flat @ v1.transpose(-2, -1)) * v1
|
|||
|
return uncond_score_td.reshape_as(uncond_score).to(uncond_score.dtype)
|
|||
|
|
|||
|
|
|||
|
class TCFG(ComfyNodeABC):
|
|||
|
@classmethod
|
|||
|
def INPUT_TYPES(cls) -> InputTypeDict:
|
|||
|
return {
|
|||
|
"required": {
|
|||
|
"model": (IO.MODEL, {}),
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
RETURN_TYPES = (IO.MODEL,)
|
|||
|
RETURN_NAMES = ("patched_model",)
|
|||
|
FUNCTION = "patch"
|
|||
|
|
|||
|
CATEGORY = "advanced/guidance"
|
|||
|
DESCRIPTION = "TCFG – Tangential Damping CFG (2503.18137)\n\nRefine the uncond (negative) to align with the cond (positive) for improving quality."
|
|||
|
|
|||
|
def patch(self, model):
|
|||
|
m = model.clone()
|
|||
|
|
|||
|
def tangential_damping_cfg(args):
|
|||
|
# Assume [cond, uncond, ...]
|
|||
|
x = args["input"]
|
|||
|
conds_out = args["conds_out"]
|
|||
|
if len(conds_out) <= 1 or None in args["conds"][:2]:
|
|||
|
# Skip when either cond or uncond is None
|
|||
|
return conds_out
|
|||
|
cond_pred = conds_out[0]
|
|||
|
uncond_pred = conds_out[1]
|
|||
|
uncond_td = score_tangential_damping(x - cond_pred, x - uncond_pred)
|
|||
|
uncond_pred_td = x - uncond_td
|
|||
|
return [cond_pred, uncond_pred_td] + conds_out[2:]
|
|||
|
|
|||
|
m.set_model_sampler_pre_cfg_function(tangential_damping_cfg)
|
|||
|
return (m,)
|
|||
|
|
|||
|
|
|||
|
NODE_CLASS_MAPPINGS = {
|
|||
|
"TCFG": TCFG,
|
|||
|
}
|
|||
|
|
|||
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|||
|
"TCFG": "Tangential Damping CFG",
|
|||
|
}
|