Add a way to set which range of timesteps the cond gets applied to.

This commit is contained in:
comfyanonymous 2023-07-24 09:25:02 -04:00
parent 30de083dd0
commit 0240946ecf
2 changed files with 53 additions and 0 deletions

View File

@ -17,6 +17,14 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in): def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
area = (x_in.shape[2], x_in.shape[3], 0, 0) area = (x_in.shape[2], x_in.shape[3], 0, 0)
strength = 1.0 strength = 1.0
if 'timestep_start' in cond[1]:
timestep_start = cond[1]['timestep_start']
if timestep_in > timestep_start:
return None
if 'timestep_end' in cond[1]:
timestep_end = cond[1]['timestep_end']
if timestep_in < timestep_end:
return None
if 'area' in cond[1]: if 'area' in cond[1]:
area = cond[1]['area'] area = cond[1]['area']
if 'strength' in cond[1]: if 'strength' in cond[1]:
@ -428,6 +436,25 @@ def create_cond_with_same_area_if_none(conds, c):
n = c[1].copy() n = c[1].copy()
conds += [[smallest[0], n]] conds += [[smallest[0], n]]
def calculate_start_end_timesteps(model, conds):
for t in range(len(conds)):
x = conds[t]
timestep_start = None
timestep_end = None
if 'start_percent' in x[1]:
timestep_start = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['start_percent'] * 999.0)))
if 'end_percent' in x[1]:
timestep_end = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['end_percent'] * 999.0)))
if (timestep_start is not None) or (timestep_end is not None):
n = x[1].copy()
if (timestep_start is not None):
n['timestep_start'] = timestep_start
if (timestep_end is not None):
n['timestep_end'] = timestep_end
conds[t] = [x[0], n]
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func): def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
cond_cnets = [] cond_cnets = []
cond_other = [] cond_other = []
@ -571,6 +598,9 @@ class KSampler:
resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device) resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device) resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)
calculate_start_end_timesteps(self.model_wrap, negative)
calculate_start_end_timesteps(self.model_wrap, positive)
#make sure each cond area has an opposite one with the same area #make sure each cond area has an opposite one with the same area
for c in positive: for c in positive:
create_cond_with_same_area_if_none(negative, c) create_cond_with_same_area_if_none(negative, c)

View File

@ -204,6 +204,28 @@ class ConditioningZeroOut:
c.append(n) c.append(n)
return (c, ) return (c, )
class ConditioningSetTimestepRange:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"start": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001})
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "set_range"
CATEGORY = "advanced/conditioning"
def set_range(self, conditioning, start, end):
c = []
for t in conditioning:
d = t[1].copy()
d['start_percent'] = start
d['end_percent'] = end
n = [t[0], d]
c.append(n)
return (c, )
class VAEDecode: class VAEDecode:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
@ -1444,6 +1466,7 @@ NODE_CLASS_MAPPINGS = {
"SaveLatent": SaveLatent, "SaveLatent": SaveLatent,
"ConditioningZeroOut": ConditioningZeroOut, "ConditioningZeroOut": ConditioningZeroOut,
"ConditioningSetTimestepRange": ConditioningSetTimestepRange,
} }
NODE_DISPLAY_NAME_MAPPINGS = { NODE_DISPLAY_NAME_MAPPINGS = {