mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 10:25:16 +00:00
Refactor sampler code for more advanced sampler nodes part 2.
This commit is contained in:
parent
57753c964a
commit
0542088ef8
102
comfy/sample.py
102
comfy/sample.py
@ -1,10 +1,9 @@
|
|||||||
import torch
|
import torch
|
||||||
import comfy.model_management
|
import comfy.model_management
|
||||||
import comfy.samplers
|
import comfy.samplers
|
||||||
import comfy.conds
|
|
||||||
import comfy.utils
|
import comfy.utils
|
||||||
import math
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import logging
|
||||||
|
|
||||||
def prepare_noise(latent_image, seed, noise_inds=None):
|
def prepare_noise(latent_image, seed, noise_inds=None):
|
||||||
"""
|
"""
|
||||||
@ -25,106 +24,21 @@ def prepare_noise(latent_image, seed, noise_inds=None):
|
|||||||
noises = torch.cat(noises, axis=0)
|
noises = torch.cat(noises, axis=0)
|
||||||
return noises
|
return noises
|
||||||
|
|
||||||
def prepare_mask(noise_mask, shape, device):
|
def prepare_sampling(model, noise_shape, positive, negative, noise_mask):
|
||||||
"""ensures noise mask is of proper dimensions"""
|
logging.warning("Warning: comfy.sample.prepare_sampling isn't used anymore and can be removed")
|
||||||
noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
|
return model, positive, negative, noise_mask, []
|
||||||
noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
|
|
||||||
noise_mask = comfy.utils.repeat_to_batch_size(noise_mask, shape[0])
|
|
||||||
noise_mask = noise_mask.to(device)
|
|
||||||
return noise_mask
|
|
||||||
|
|
||||||
def get_models_from_cond(cond, model_type):
|
|
||||||
models = []
|
|
||||||
for c in cond:
|
|
||||||
if model_type in c:
|
|
||||||
models += [c[model_type]]
|
|
||||||
return models
|
|
||||||
|
|
||||||
def convert_cond(cond):
|
|
||||||
out = []
|
|
||||||
for c in cond:
|
|
||||||
temp = c[1].copy()
|
|
||||||
model_conds = temp.get("model_conds", {})
|
|
||||||
if c[0] is not None:
|
|
||||||
model_conds["c_crossattn"] = comfy.conds.CONDCrossAttn(c[0]) #TODO: remove
|
|
||||||
temp["cross_attn"] = c[0]
|
|
||||||
temp["model_conds"] = model_conds
|
|
||||||
out.append(temp)
|
|
||||||
return out
|
|
||||||
|
|
||||||
def get_additional_models(conds, dtype):
|
|
||||||
"""loads additional models in conditioning"""
|
|
||||||
cnets = []
|
|
||||||
gligen = []
|
|
||||||
|
|
||||||
for i in range(len(conds)):
|
|
||||||
cnets += get_models_from_cond(conds[i], "control")
|
|
||||||
gligen += get_models_from_cond(conds[i], "gligen")
|
|
||||||
|
|
||||||
control_nets = set(cnets)
|
|
||||||
|
|
||||||
inference_memory = 0
|
|
||||||
control_models = []
|
|
||||||
for m in control_nets:
|
|
||||||
control_models += m.get_models()
|
|
||||||
inference_memory += m.inference_memory_requirements(dtype)
|
|
||||||
|
|
||||||
gligen = [x[1] for x in gligen]
|
|
||||||
models = control_models + gligen
|
|
||||||
return models, inference_memory
|
|
||||||
|
|
||||||
def cleanup_additional_models(models):
|
def cleanup_additional_models(models):
|
||||||
"""cleanup additional models that were loaded"""
|
logging.warning("Warning: comfy.sample.cleanup_additional_models isn't used anymore and can be removed")
|
||||||
for m in models:
|
|
||||||
if hasattr(m, 'cleanup'):
|
|
||||||
m.cleanup()
|
|
||||||
|
|
||||||
def prepare_sampling(model, noise_shape, conds, noise_mask):
|
|
||||||
device = model.load_device
|
|
||||||
for i in range(len(conds)):
|
|
||||||
conds[i] = convert_cond(conds[i])
|
|
||||||
|
|
||||||
if noise_mask is not None:
|
|
||||||
noise_mask = prepare_mask(noise_mask, noise_shape, device)
|
|
||||||
|
|
||||||
real_model = None
|
|
||||||
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
|
||||||
comfy.model_management.load_models_gpu([model] + models, model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory)
|
|
||||||
real_model = model.model
|
|
||||||
|
|
||||||
return real_model, conds, noise_mask, models
|
|
||||||
|
|
||||||
|
|
||||||
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
|
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
|
||||||
real_model, conds_copy, noise_mask, models = prepare_sampling(model, noise.shape, [positive, negative], noise_mask)
|
sampler = comfy.samplers.KSampler(model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
||||||
positive_copy, negative_copy = conds_copy
|
|
||||||
|
|
||||||
noise = noise.to(model.load_device)
|
samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
||||||
latent_image = latent_image.to(model.load_device)
|
|
||||||
|
|
||||||
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
|
||||||
|
|
||||||
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
|
||||||
samples = samples.to(comfy.model_management.intermediate_device())
|
samples = samples.to(comfy.model_management.intermediate_device())
|
||||||
|
|
||||||
cleanup_additional_models(models)
|
|
||||||
cleanup_additional_models(set(get_models_from_cond(positive_copy, "control") + get_models_from_cond(negative_copy, "control")))
|
|
||||||
return samples
|
return samples
|
||||||
|
|
||||||
def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None):
|
def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||||
real_model, conds, noise_mask, models = prepare_sampling(model, noise.shape, [positive, negative], noise_mask)
|
samples = comfy.samplers.sample(model, noise, positive, negative, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
||||||
noise = noise.to(model.load_device)
|
|
||||||
latent_image = latent_image.to(model.load_device)
|
|
||||||
sigmas = sigmas.to(model.load_device)
|
|
||||||
|
|
||||||
samples = comfy.samplers.sample(real_model, noise, conds[0], conds[1], cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
|
||||||
samples = samples.to(comfy.model_management.intermediate_device())
|
samples = samples.to(comfy.model_management.intermediate_device())
|
||||||
cleanup_additional_models(models)
|
|
||||||
|
|
||||||
control_cleanup = []
|
|
||||||
for i in range(len(conds)):
|
|
||||||
control_cleanup += get_models_from_cond(conds[i], "control")
|
|
||||||
|
|
||||||
cleanup_additional_models(set(control_cleanup))
|
|
||||||
return samples
|
return samples
|
||||||
|
|
||||||
|
76
comfy/sampler_helpers.py
Normal file
76
comfy/sampler_helpers.py
Normal file
@ -0,0 +1,76 @@
|
|||||||
|
import torch
|
||||||
|
import comfy.model_management
|
||||||
|
import comfy.conds
|
||||||
|
|
||||||
|
def prepare_mask(noise_mask, shape, device):
|
||||||
|
"""ensures noise mask is of proper dimensions"""
|
||||||
|
noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
|
||||||
|
noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
|
||||||
|
noise_mask = comfy.utils.repeat_to_batch_size(noise_mask, shape[0])
|
||||||
|
noise_mask = noise_mask.to(device)
|
||||||
|
return noise_mask
|
||||||
|
|
||||||
|
def get_models_from_cond(cond, model_type):
|
||||||
|
models = []
|
||||||
|
for c in cond:
|
||||||
|
if model_type in c:
|
||||||
|
models += [c[model_type]]
|
||||||
|
return models
|
||||||
|
|
||||||
|
def convert_cond(cond):
|
||||||
|
out = []
|
||||||
|
for c in cond:
|
||||||
|
temp = c[1].copy()
|
||||||
|
model_conds = temp.get("model_conds", {})
|
||||||
|
if c[0] is not None:
|
||||||
|
model_conds["c_crossattn"] = comfy.conds.CONDCrossAttn(c[0]) #TODO: remove
|
||||||
|
temp["cross_attn"] = c[0]
|
||||||
|
temp["model_conds"] = model_conds
|
||||||
|
out.append(temp)
|
||||||
|
return out
|
||||||
|
|
||||||
|
def get_additional_models(conds, dtype):
|
||||||
|
"""loads additional models in conditioning"""
|
||||||
|
cnets = []
|
||||||
|
gligen = []
|
||||||
|
|
||||||
|
for k in conds:
|
||||||
|
cnets += get_models_from_cond(conds[k], "control")
|
||||||
|
gligen += get_models_from_cond(conds[k], "gligen")
|
||||||
|
|
||||||
|
control_nets = set(cnets)
|
||||||
|
|
||||||
|
inference_memory = 0
|
||||||
|
control_models = []
|
||||||
|
for m in control_nets:
|
||||||
|
control_models += m.get_models()
|
||||||
|
inference_memory += m.inference_memory_requirements(dtype)
|
||||||
|
|
||||||
|
gligen = [x[1] for x in gligen]
|
||||||
|
models = control_models + gligen
|
||||||
|
return models, inference_memory
|
||||||
|
|
||||||
|
def cleanup_additional_models(models):
|
||||||
|
"""cleanup additional models that were loaded"""
|
||||||
|
for m in models:
|
||||||
|
if hasattr(m, 'cleanup'):
|
||||||
|
m.cleanup()
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_sampling(model, noise_shape, conds):
|
||||||
|
device = model.load_device
|
||||||
|
real_model = None
|
||||||
|
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
||||||
|
comfy.model_management.load_models_gpu([model] + models, model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory)
|
||||||
|
real_model = model.model
|
||||||
|
|
||||||
|
return real_model, conds, models
|
||||||
|
|
||||||
|
def cleanup_models(conds, models):
|
||||||
|
cleanup_additional_models(models)
|
||||||
|
|
||||||
|
control_cleanup = []
|
||||||
|
for k in conds:
|
||||||
|
control_cleanup += get_models_from_cond(conds[k], "control")
|
||||||
|
|
||||||
|
cleanup_additional_models(set(control_cleanup))
|
@ -5,6 +5,7 @@ import collections
|
|||||||
from comfy import model_management
|
from comfy import model_management
|
||||||
import math
|
import math
|
||||||
import logging
|
import logging
|
||||||
|
import comfy.sampler_helpers
|
||||||
|
|
||||||
def get_area_and_mult(conds, x_in, timestep_in):
|
def get_area_and_mult(conds, x_in, timestep_in):
|
||||||
area = (x_in.shape[2], x_in.shape[3], 0, 0)
|
area = (x_in.shape[2], x_in.shape[3], 0, 0)
|
||||||
@ -230,58 +231,45 @@ def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
|
|||||||
logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
|
logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
|
||||||
return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
|
return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
|
||||||
|
|
||||||
|
def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options={}):
|
||||||
|
if "sampler_cfg_function" in model_options:
|
||||||
|
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
|
||||||
|
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
|
||||||
|
cfg_result = x - model_options["sampler_cfg_function"](args)
|
||||||
|
else:
|
||||||
|
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
|
||||||
|
|
||||||
|
for fn in model_options.get("sampler_post_cfg_function", []):
|
||||||
|
args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
|
||||||
|
"sigma": timestep, "model_options": model_options, "input": x}
|
||||||
|
cfg_result = fn(args)
|
||||||
|
|
||||||
|
return cfg_result
|
||||||
|
|
||||||
#The main sampling function shared by all the samplers
|
#The main sampling function shared by all the samplers
|
||||||
#Returns denoised
|
#Returns denoised
|
||||||
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
|
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
|
||||||
if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
|
if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
|
||||||
uncond_ = None
|
uncond_ = None
|
||||||
else:
|
else:
|
||||||
uncond_ = uncond
|
uncond_ = uncond
|
||||||
|
|
||||||
|
conds = [cond, uncond_]
|
||||||
|
out = calc_cond_batch(model, conds, x, timestep, model_options)
|
||||||
|
return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options)
|
||||||
|
|
||||||
|
|
||||||
conds = [cond, uncond_]
|
class KSamplerX0Inpaint:
|
||||||
|
|
||||||
out = calc_cond_batch(model, conds, x, timestep, model_options)
|
|
||||||
cond_pred = out[0]
|
|
||||||
uncond_pred = out[1]
|
|
||||||
|
|
||||||
if "sampler_cfg_function" in model_options:
|
|
||||||
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
|
|
||||||
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
|
|
||||||
cfg_result = x - model_options["sampler_cfg_function"](args)
|
|
||||||
else:
|
|
||||||
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
|
|
||||||
|
|
||||||
for fn in model_options.get("sampler_post_cfg_function", []):
|
|
||||||
args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
|
|
||||||
"sigma": timestep, "model_options": model_options, "input": x}
|
|
||||||
cfg_result = fn(args)
|
|
||||||
|
|
||||||
return cfg_result
|
|
||||||
|
|
||||||
class CFGNoisePredictor(torch.nn.Module):
|
|
||||||
def __init__(self, model, cond_scale=1.0):
|
|
||||||
super().__init__()
|
|
||||||
self.inner_model = model
|
|
||||||
self.cond_scale = cond_scale
|
|
||||||
def apply_model(self, x, timestep, conds, model_options={}, seed=None):
|
|
||||||
out = sampling_function(self.inner_model, x, timestep, conds.get("negative", None), conds.get("positive", None), self.cond_scale, model_options=model_options, seed=seed)
|
|
||||||
return out
|
|
||||||
def forward(self, *args, **kwargs):
|
|
||||||
return self.apply_model(*args, **kwargs)
|
|
||||||
|
|
||||||
class KSamplerX0Inpaint(torch.nn.Module):
|
|
||||||
def __init__(self, model, sigmas):
|
def __init__(self, model, sigmas):
|
||||||
super().__init__()
|
|
||||||
self.inner_model = model
|
self.inner_model = model
|
||||||
self.sigmas = sigmas
|
self.sigmas = sigmas
|
||||||
def forward(self, x, sigma, conds, denoise_mask, model_options={}, seed=None):
|
def __call__(self, x, sigma, denoise_mask, model_options={}, seed=None):
|
||||||
if denoise_mask is not None:
|
if denoise_mask is not None:
|
||||||
if "denoise_mask_function" in model_options:
|
if "denoise_mask_function" in model_options:
|
||||||
denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask, extra_options={"model": self.inner_model, "sigmas": self.sigmas})
|
denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask, extra_options={"model": self.inner_model, "sigmas": self.sigmas})
|
||||||
latent_mask = 1. - denoise_mask
|
latent_mask = 1. - denoise_mask
|
||||||
x = x * denoise_mask + self.inner_model.inner_model.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1)), self.noise, self.latent_image) * latent_mask
|
x = x * denoise_mask + self.inner_model.inner_model.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1)), self.noise, self.latent_image) * latent_mask
|
||||||
out = self.inner_model(x, sigma, conds=conds, model_options=model_options, seed=seed)
|
out = self.inner_model(x, sigma, model_options=model_options, seed=seed)
|
||||||
if denoise_mask is not None:
|
if denoise_mask is not None:
|
||||||
out = out * denoise_mask + self.latent_image * latent_mask
|
out = out * denoise_mask + self.latent_image * latent_mask
|
||||||
return out
|
return out
|
||||||
@ -601,22 +589,66 @@ def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=N
|
|||||||
|
|
||||||
return conds
|
return conds
|
||||||
|
|
||||||
|
class CFGGuider:
|
||||||
|
def __init__(self, model_patcher):
|
||||||
|
self.model_patcher = model_patcher
|
||||||
|
self.model_options = model_patcher.model_options
|
||||||
|
self.original_conds = {}
|
||||||
|
self.cfg = 1.0
|
||||||
|
|
||||||
def sample_advanced(model, noise, conds, guider_class, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
|
def set_conds(self, conds):
|
||||||
if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image.
|
for k in conds:
|
||||||
latent_image = model.process_latent_in(latent_image)
|
self.original_conds[k] = comfy.sampler_helpers.convert_cond(conds[k])
|
||||||
|
|
||||||
conds = process_conds(model, noise, conds, device, latent_image, denoise_mask, seed)
|
def set_cfg(self, cfg):
|
||||||
model_wrap = guider_class(model)
|
self.cfg = cfg
|
||||||
|
|
||||||
extra_args = {"conds": conds, "model_options": model_options, "seed":seed}
|
def __call__(self, *args, **kwargs):
|
||||||
|
return self.predict_noise(*args, **kwargs)
|
||||||
|
|
||||||
samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
|
def predict_noise(self, x, timestep, model_options={}, seed=None):
|
||||||
return model.process_latent_out(samples.to(torch.float32))
|
return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed)
|
||||||
|
|
||||||
|
def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed):
|
||||||
|
if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image.
|
||||||
|
latent_image = self.inner_model.process_latent_in(latent_image)
|
||||||
|
|
||||||
|
self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed)
|
||||||
|
|
||||||
|
extra_args = {"model_options": self.model_options, "seed":seed}
|
||||||
|
|
||||||
|
samples = sampler.sample(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
|
||||||
|
return self.inner_model.process_latent_out(samples.to(torch.float32))
|
||||||
|
|
||||||
|
def sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||||
|
self.conds = {}
|
||||||
|
for k in self.original_conds:
|
||||||
|
self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))
|
||||||
|
|
||||||
|
self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds)
|
||||||
|
device = self.model_patcher.load_device
|
||||||
|
|
||||||
|
if denoise_mask is not None:
|
||||||
|
denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)
|
||||||
|
|
||||||
|
noise = noise.to(device)
|
||||||
|
latent_image = latent_image.to(device)
|
||||||
|
sigmas = sigmas.to(device)
|
||||||
|
|
||||||
|
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
|
||||||
|
|
||||||
|
comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models)
|
||||||
|
del self.inner_model
|
||||||
|
del self.conds
|
||||||
|
del self.loaded_models
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
|
def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||||
return sample_advanced(model, noise, {"positive": positive, "negative": negative}, lambda a: CFGNoisePredictor(a, cfg), device, sampler, sigmas, model_options, latent_image, denoise_mask, callback, disable_pbar, seed)
|
cfg_guider = CFGGuider(model)
|
||||||
|
cfg_guider.set_conds({"positive": positive, "negative": negative})
|
||||||
|
cfg_guider.set_cfg(cfg)
|
||||||
|
return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
|
||||||
|
|
||||||
|
|
||||||
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
|
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
|
||||||
@ -676,7 +708,7 @@ class KSampler:
|
|||||||
steps += 1
|
steps += 1
|
||||||
discard_penultimate_sigma = True
|
discard_penultimate_sigma = True
|
||||||
|
|
||||||
sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps)
|
sigmas = calculate_sigmas_scheduler(self.model.model, self.scheduler, steps)
|
||||||
|
|
||||||
if discard_penultimate_sigma:
|
if discard_penultimate_sigma:
|
||||||
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
||||||
|
Loading…
Reference in New Issue
Block a user