mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Fix ConditioningAverage.
This commit is contained in:
parent
29c8f1a344
commit
0aa667ed33
25
nodes.py
25
nodes.py
@ -62,21 +62,30 @@ class ConditioningCombine:
|
|||||||
class ConditioningAverage :
|
class ConditioningAverage :
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def INPUT_TYPES(s):
|
||||||
return {"required": {"conditioning_from": ("CONDITIONING", ), "conditioning_to": ("CONDITIONING", ),
|
return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
|
||||||
"conditioning_from_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.1})
|
"conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||||
}}
|
}}
|
||||||
RETURN_TYPES = ("CONDITIONING",)
|
RETURN_TYPES = ("CONDITIONING",)
|
||||||
FUNCTION = "addWeighted"
|
FUNCTION = "addWeighted"
|
||||||
|
|
||||||
CATEGORY = "conditioning"
|
CATEGORY = "conditioning"
|
||||||
|
|
||||||
def addWeighted(self, conditioning_from, conditioning_to, conditioning_from_strength):
|
def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
|
||||||
out = []
|
out = []
|
||||||
for i in range(min(len(conditioning_from),len(conditioning_to))):
|
|
||||||
t0 = conditioning_from[i]
|
if len(conditioning_from) > 1:
|
||||||
t1 = conditioning_to[i]
|
print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
|
||||||
tw = torch.mul(t0[0],(1-conditioning_from_strength)) + torch.mul(t1[0],conditioning_from_strength)
|
|
||||||
n = [tw, t0[1].copy()]
|
cond_from = conditioning_from[0][0]
|
||||||
|
|
||||||
|
for i in range(len(conditioning_to)):
|
||||||
|
t1 = conditioning_to[i][0]
|
||||||
|
t0 = cond_from[:,:t1.shape[1]]
|
||||||
|
if t0.shape[1] < t1.shape[1]:
|
||||||
|
t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)
|
||||||
|
|
||||||
|
tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
|
||||||
|
n = [tw, conditioning_to[i][1].copy()]
|
||||||
out.append(n)
|
out.append(n)
|
||||||
return (out, )
|
return (out, )
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user