mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Update SD3 code.
This commit is contained in:
parent
c320801187
commit
13b0ff8a6f
@ -1,6 +1,6 @@
|
||||
import logging
|
||||
import math
|
||||
from typing import Dict, Optional
|
||||
from typing import Dict, Optional, List
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@ -415,6 +415,7 @@ class DismantledBlock(nn.Module):
|
||||
scale_mod_only: bool = False,
|
||||
swiglu: bool = False,
|
||||
qk_norm: Optional[str] = None,
|
||||
x_block_self_attn: bool = False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
@ -438,6 +439,24 @@ class DismantledBlock(nn.Module):
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
if x_block_self_attn:
|
||||
assert not pre_only
|
||||
assert not scale_mod_only
|
||||
self.x_block_self_attn = True
|
||||
self.attn2 = SelfAttention(
|
||||
dim=hidden_size,
|
||||
num_heads=num_heads,
|
||||
qkv_bias=qkv_bias,
|
||||
attn_mode=attn_mode,
|
||||
pre_only=False,
|
||||
qk_norm=qk_norm,
|
||||
rmsnorm=rmsnorm,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
else:
|
||||
self.x_block_self_attn = False
|
||||
if not pre_only:
|
||||
if not rmsnorm:
|
||||
self.norm2 = operations.LayerNorm(
|
||||
@ -464,7 +483,11 @@ class DismantledBlock(nn.Module):
|
||||
multiple_of=256,
|
||||
)
|
||||
self.scale_mod_only = scale_mod_only
|
||||
if not scale_mod_only:
|
||||
if x_block_self_attn:
|
||||
assert not pre_only
|
||||
assert not scale_mod_only
|
||||
n_mods = 9
|
||||
elif not scale_mod_only:
|
||||
n_mods = 6 if not pre_only else 2
|
||||
else:
|
||||
n_mods = 4 if not pre_only else 1
|
||||
@ -525,14 +548,64 @@ class DismantledBlock(nn.Module):
|
||||
)
|
||||
return x
|
||||
|
||||
def pre_attention_x(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
|
||||
assert self.x_block_self_attn
|
||||
(
|
||||
shift_msa,
|
||||
scale_msa,
|
||||
gate_msa,
|
||||
shift_mlp,
|
||||
scale_mlp,
|
||||
gate_mlp,
|
||||
shift_msa2,
|
||||
scale_msa2,
|
||||
gate_msa2,
|
||||
) = self.adaLN_modulation(c).chunk(9, dim=1)
|
||||
x_norm = self.norm1(x)
|
||||
qkv = self.attn.pre_attention(modulate(x_norm, shift_msa, scale_msa))
|
||||
qkv2 = self.attn2.pre_attention(modulate(x_norm, shift_msa2, scale_msa2))
|
||||
return qkv, qkv2, (
|
||||
x,
|
||||
gate_msa,
|
||||
shift_mlp,
|
||||
scale_mlp,
|
||||
gate_mlp,
|
||||
gate_msa2,
|
||||
)
|
||||
|
||||
def post_attention_x(self, attn, attn2, x, gate_msa, shift_mlp, scale_mlp, gate_mlp, gate_msa2):
|
||||
assert not self.pre_only
|
||||
attn1 = self.attn.post_attention(attn)
|
||||
attn2 = self.attn2.post_attention(attn2)
|
||||
out1 = gate_msa.unsqueeze(1) * attn1
|
||||
out2 = gate_msa2.unsqueeze(1) * attn2
|
||||
x = x + out1
|
||||
x = x + out2
|
||||
x = x + gate_mlp.unsqueeze(1) * self.mlp(
|
||||
modulate(self.norm2(x), shift_mlp, scale_mlp)
|
||||
)
|
||||
return x
|
||||
|
||||
def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
|
||||
assert not self.pre_only
|
||||
qkv, intermediates = self.pre_attention(x, c)
|
||||
attn = optimized_attention(
|
||||
qkv[0], qkv[1], qkv[2],
|
||||
heads=self.attn.num_heads,
|
||||
)
|
||||
return self.post_attention(attn, *intermediates)
|
||||
if self.x_block_self_attn:
|
||||
qkv, qkv2, intermediates = self.pre_attention_x(x, c)
|
||||
attn, _ = optimized_attention(
|
||||
qkv[0], qkv[1], qkv[2],
|
||||
num_heads=self.attn.num_heads,
|
||||
)
|
||||
attn2, _ = optimized_attention(
|
||||
qkv2[0], qkv2[1], qkv2[2],
|
||||
num_heads=self.attn2.num_heads,
|
||||
)
|
||||
return self.post_attention_x(attn, attn2, *intermediates)
|
||||
else:
|
||||
qkv, intermediates = self.pre_attention(x, c)
|
||||
attn = optimized_attention(
|
||||
qkv[0], qkv[1], qkv[2],
|
||||
heads=self.attn.num_heads,
|
||||
)
|
||||
return self.post_attention(attn, *intermediates)
|
||||
|
||||
|
||||
def block_mixing(*args, use_checkpoint=True, **kwargs):
|
||||
@ -547,7 +620,10 @@ def block_mixing(*args, use_checkpoint=True, **kwargs):
|
||||
def _block_mixing(context, x, context_block, x_block, c):
|
||||
context_qkv, context_intermediates = context_block.pre_attention(context, c)
|
||||
|
||||
x_qkv, x_intermediates = x_block.pre_attention(x, c)
|
||||
if x_block.x_block_self_attn:
|
||||
x_qkv, x_qkv2, x_intermediates = x_block.pre_attention_x(x, c)
|
||||
else:
|
||||
x_qkv, x_intermediates = x_block.pre_attention(x, c)
|
||||
|
||||
o = []
|
||||
for t in range(3):
|
||||
@ -568,7 +644,14 @@ def _block_mixing(context, x, context_block, x_block, c):
|
||||
|
||||
else:
|
||||
context = None
|
||||
x = x_block.post_attention(x_attn, *x_intermediates)
|
||||
if x_block.x_block_self_attn:
|
||||
attn2 = optimized_attention(
|
||||
x_qkv2[0], x_qkv2[1], x_qkv2[2],
|
||||
heads=x_block.attn2.num_heads,
|
||||
)
|
||||
x = x_block.post_attention_x(x_attn, attn2, *x_intermediates)
|
||||
else:
|
||||
x = x_block.post_attention(x_attn, *x_intermediates)
|
||||
return context, x
|
||||
|
||||
|
||||
@ -583,8 +666,13 @@ class JointBlock(nn.Module):
|
||||
super().__init__()
|
||||
pre_only = kwargs.pop("pre_only")
|
||||
qk_norm = kwargs.pop("qk_norm", None)
|
||||
x_block_self_attn = kwargs.pop("x_block_self_attn", False)
|
||||
self.context_block = DismantledBlock(*args, pre_only=pre_only, qk_norm=qk_norm, **kwargs)
|
||||
self.x_block = DismantledBlock(*args, pre_only=False, qk_norm=qk_norm, **kwargs)
|
||||
self.x_block = DismantledBlock(*args,
|
||||
pre_only=False,
|
||||
qk_norm=qk_norm,
|
||||
x_block_self_attn=x_block_self_attn,
|
||||
**kwargs)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return block_mixing(
|
||||
@ -699,9 +787,12 @@ class MMDiT(nn.Module):
|
||||
qk_norm: Optional[str] = None,
|
||||
qkv_bias: bool = True,
|
||||
context_processor_layers = None,
|
||||
x_block_self_attn: bool = False,
|
||||
x_block_self_attn_layers: Optional[List[int]] = [],
|
||||
context_size = 4096,
|
||||
num_blocks = None,
|
||||
final_layer = True,
|
||||
skip_blocks = False,
|
||||
dtype = None, #TODO
|
||||
device = None,
|
||||
operations = None,
|
||||
@ -716,6 +807,7 @@ class MMDiT(nn.Module):
|
||||
self.pos_embed_scaling_factor = pos_embed_scaling_factor
|
||||
self.pos_embed_offset = pos_embed_offset
|
||||
self.pos_embed_max_size = pos_embed_max_size
|
||||
self.x_block_self_attn_layers = x_block_self_attn_layers
|
||||
|
||||
# hidden_size = default(hidden_size, 64 * depth)
|
||||
# num_heads = default(num_heads, hidden_size // 64)
|
||||
@ -773,26 +865,28 @@ class MMDiT(nn.Module):
|
||||
self.pos_embed = None
|
||||
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.joint_blocks = nn.ModuleList(
|
||||
[
|
||||
JointBlock(
|
||||
self.hidden_size,
|
||||
num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
attn_mode=attn_mode,
|
||||
pre_only=(i == num_blocks - 1) and final_layer,
|
||||
rmsnorm=rmsnorm,
|
||||
scale_mod_only=scale_mod_only,
|
||||
swiglu=swiglu,
|
||||
qk_norm=qk_norm,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
for i in range(num_blocks)
|
||||
]
|
||||
)
|
||||
if not skip_blocks:
|
||||
self.joint_blocks = nn.ModuleList(
|
||||
[
|
||||
JointBlock(
|
||||
self.hidden_size,
|
||||
num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
attn_mode=attn_mode,
|
||||
pre_only=(i == num_blocks - 1) and final_layer,
|
||||
rmsnorm=rmsnorm,
|
||||
scale_mod_only=scale_mod_only,
|
||||
swiglu=swiglu,
|
||||
qk_norm=qk_norm,
|
||||
x_block_self_attn=(i in self.x_block_self_attn_layers) or x_block_self_attn,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
for i in range(num_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
if final_layer:
|
||||
self.final_layer = FinalLayer(self.hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
@ -70,6 +70,11 @@ def detect_unet_config(state_dict, key_prefix):
|
||||
context_processor = '{}context_processor.layers.0.attn.qkv.weight'.format(key_prefix)
|
||||
if context_processor in state_dict_keys:
|
||||
unet_config["context_processor_layers"] = count_blocks(state_dict_keys, '{}context_processor.layers.'.format(key_prefix) + '{}.')
|
||||
unet_config["x_block_self_attn_layers"] = []
|
||||
for key in state_dict_keys:
|
||||
if key.startswith('{}joint_blocks.'.format(key_prefix)) and key.endswith('.x_block.attn2.qkv.weight'):
|
||||
layer = key[len('{}joint_blocks.'.format(key_prefix)):-len('.x_block.attn2.qkv.weight')]
|
||||
unet_config["x_block_self_attn_layers"].append(int(layer))
|
||||
return unet_config
|
||||
|
||||
if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade
|
||||
|
Loading…
Reference in New Issue
Block a user