mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 02:15:17 +00:00
Fix model needing to be loaded on GPU to generate the sigmas.
This commit is contained in:
parent
1f8d8e6c77
commit
1a0486bb96
@ -150,6 +150,12 @@ class ModelPatcher:
|
||||
def add_object_patch(self, name, obj):
|
||||
self.object_patches[name] = obj
|
||||
|
||||
def get_model_object(self, name):
|
||||
if name in self.object_patches:
|
||||
return self.object_patches[name]
|
||||
else:
|
||||
return comfy.utils.get_attr(self.model, name)
|
||||
|
||||
def model_patches_to(self, device):
|
||||
to = self.model_options["transformer_options"]
|
||||
if "patches" in to:
|
||||
|
@ -274,8 +274,8 @@ class KSamplerX0Inpaint:
|
||||
out = out * denoise_mask + self.latent_image * latent_mask
|
||||
return out
|
||||
|
||||
def simple_scheduler(model, steps):
|
||||
s = model.model_sampling
|
||||
def simple_scheduler(model_sampling, steps):
|
||||
s = model_sampling
|
||||
sigs = []
|
||||
ss = len(s.sigmas) / steps
|
||||
for x in range(steps):
|
||||
@ -283,8 +283,8 @@ def simple_scheduler(model, steps):
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
def ddim_scheduler(model, steps):
|
||||
s = model.model_sampling
|
||||
def ddim_scheduler(model_sampling, steps):
|
||||
s = model_sampling
|
||||
sigs = []
|
||||
ss = max(len(s.sigmas) // steps, 1)
|
||||
x = 1
|
||||
@ -295,8 +295,8 @@ def ddim_scheduler(model, steps):
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
def normal_scheduler(model, steps, sgm=False, floor=False):
|
||||
s = model.model_sampling
|
||||
def normal_scheduler(model_sampling, steps, sgm=False, floor=False):
|
||||
s = model_sampling
|
||||
start = s.timestep(s.sigma_max)
|
||||
end = s.timestep(s.sigma_min)
|
||||
|
||||
@ -660,19 +660,19 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
|
||||
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
|
||||
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]
|
||||
|
||||
def calculate_sigmas_scheduler(model, scheduler_name, steps):
|
||||
def calculate_sigmas(model_sampling, scheduler_name, steps):
|
||||
if scheduler_name == "karras":
|
||||
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
|
||||
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max))
|
||||
elif scheduler_name == "exponential":
|
||||
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
|
||||
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max))
|
||||
elif scheduler_name == "normal":
|
||||
sigmas = normal_scheduler(model, steps)
|
||||
sigmas = normal_scheduler(model_sampling, steps)
|
||||
elif scheduler_name == "simple":
|
||||
sigmas = simple_scheduler(model, steps)
|
||||
sigmas = simple_scheduler(model_sampling, steps)
|
||||
elif scheduler_name == "ddim_uniform":
|
||||
sigmas = ddim_scheduler(model, steps)
|
||||
sigmas = ddim_scheduler(model_sampling, steps)
|
||||
elif scheduler_name == "sgm_uniform":
|
||||
sigmas = normal_scheduler(model, steps, sgm=True)
|
||||
sigmas = normal_scheduler(model_sampling, steps, sgm=True)
|
||||
else:
|
||||
logging.error("error invalid scheduler {}".format(scheduler_name))
|
||||
return sigmas
|
||||
@ -714,7 +714,7 @@ class KSampler:
|
||||
steps += 1
|
||||
discard_penultimate_sigma = True
|
||||
|
||||
sigmas = calculate_sigmas_scheduler(self.model.model, self.scheduler, steps)
|
||||
sigmas = calculate_sigmas(self.model.get_model_object("model_sampling"), self.scheduler, steps)
|
||||
|
||||
if discard_penultimate_sigma:
|
||||
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
||||
|
@ -28,8 +28,7 @@ class BasicScheduler:
|
||||
return (torch.FloatTensor([]),)
|
||||
total_steps = int(steps/denoise)
|
||||
|
||||
comfy.model_management.load_models_gpu([model])
|
||||
sigmas = comfy.samplers.calculate_sigmas_scheduler(model.model, scheduler, total_steps).cpu()
|
||||
sigmas = comfy.samplers.calculate_sigmas(model.get_model_object("model_sampling"), scheduler, total_steps).cpu()
|
||||
sigmas = sigmas[-(steps + 1):]
|
||||
return (sigmas, )
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user