Add some pytorch scaled_dot_product_attention code for testing.

--use-pytorch-cross-attention to use it.
This commit is contained in:
comfyanonymous 2023-03-02 17:01:20 -05:00
parent c8ce599a8f
commit 1a612e1c74

View File

@ -442,11 +442,61 @@ class MemoryEfficientCrossAttention(nn.Module):
) )
return self.to_out(out) return self.to_out(out)
class CrossAttentionPytorch(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.heads = heads
self.dim_head = dim_head
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
self.attention_op: Optional[Any] = None
def forward(self, x, context=None, mask=None):
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(q, k, v),
)
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
if exists(mask):
raise NotImplementedError
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
return self.to_out(out)
import sys import sys
if XFORMERS_IS_AVAILBLE == False: if XFORMERS_IS_AVAILBLE == False or "--disable-xformers" in sys.argv:
if "--use-split-cross-attention" in sys.argv: if "--use-split-cross-attention" in sys.argv:
print("Using split optimization for cross attention") print("Using split optimization for cross attention")
CrossAttention = CrossAttentionDoggettx CrossAttention = CrossAttentionDoggettx
else:
if "--use-pytorch-cross-attention" in sys.argv:
print("Using pytorch cross attention")
torch.backends.cuda.enable_math_sdp(False)
CrossAttention = CrossAttentionPytorch
else: else:
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention") print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
CrossAttention = CrossAttentionBirchSan CrossAttention = CrossAttentionBirchSan