mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Scheduler code refactor.
This commit is contained in:
parent
446caf711c
commit
1d6dd83184
@ -549,7 +549,7 @@ class Sampler:
|
||||
pass
|
||||
|
||||
def max_denoise(self, model_wrap, sigmas):
|
||||
return math.isclose(float(model_wrap.sigma_max), float(sigmas[0]))
|
||||
return math.isclose(float(model_wrap.sigma_max), float(sigmas[0]), rel_tol=1e-05)
|
||||
|
||||
class DDIM(Sampler):
|
||||
def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
|
||||
@ -631,6 +631,13 @@ def ksampler(sampler_name):
|
||||
return samples
|
||||
return KSAMPLER
|
||||
|
||||
def wrap_model(model):
|
||||
model_denoise = CFGNoisePredictor(model)
|
||||
if model.model_type == model_base.ModelType.V_PREDICTION:
|
||||
model_wrap = CompVisVDenoiser(model_denoise, quantize=True)
|
||||
else:
|
||||
model_wrap = k_diffusion_external.CompVisDenoiser(model_denoise, quantize=True)
|
||||
return model_wrap
|
||||
|
||||
def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||
positive = positive[:]
|
||||
@ -639,11 +646,7 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
|
||||
resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
|
||||
resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)
|
||||
|
||||
model_denoise = CFGNoisePredictor(model)
|
||||
if model.model_type == model_base.ModelType.V_PREDICTION:
|
||||
model_wrap = CompVisVDenoiser(model_denoise, quantize=True)
|
||||
else:
|
||||
model_wrap = k_diffusion_external.CompVisDenoiser(model_denoise, quantize=True)
|
||||
model_wrap = wrap_model(model)
|
||||
|
||||
calculate_start_end_timesteps(model_wrap, negative)
|
||||
calculate_start_end_timesteps(model_wrap, positive)
|
||||
@ -687,19 +690,33 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
|
||||
samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
|
||||
return model.process_latent_out(samples.to(torch.float32))
|
||||
|
||||
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
|
||||
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]
|
||||
|
||||
def calculate_sigmas_scheduler(model, scheduler_name, steps):
|
||||
model_wrap = wrap_model(model)
|
||||
if scheduler_name == "karras":
|
||||
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model_wrap.sigma_min), sigma_max=float(model_wrap.sigma_max))
|
||||
elif scheduler_name == "exponential":
|
||||
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model_wrap.sigma_min), sigma_max=float(model_wrap.sigma_max))
|
||||
elif scheduler_name == "normal":
|
||||
sigmas = model_wrap.get_sigmas(steps)
|
||||
elif scheduler_name == "simple":
|
||||
sigmas = simple_scheduler(model_wrap, steps)
|
||||
elif scheduler_name == "ddim_uniform":
|
||||
sigmas = ddim_scheduler(model_wrap, steps)
|
||||
elif scheduler_name == "sgm_uniform":
|
||||
sigmas = sgm_scheduler(model_wrap, steps)
|
||||
else:
|
||||
print("error invalid scheduler", self.scheduler)
|
||||
return sigmas
|
||||
|
||||
class KSampler:
|
||||
SCHEDULERS = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
|
||||
SAMPLERS = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]
|
||||
SCHEDULERS = SCHEDULER_NAMES
|
||||
SAMPLERS = SAMPLER_NAMES
|
||||
|
||||
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
|
||||
self.model = model
|
||||
self.model_denoise = CFGNoisePredictor(self.model)
|
||||
if self.model.model_type == model_base.ModelType.V_PREDICTION:
|
||||
self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
|
||||
else:
|
||||
self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
|
||||
|
||||
self.model_k = KSamplerX0Inpaint(self.model_wrap)
|
||||
self.device = device
|
||||
if scheduler not in self.SCHEDULERS:
|
||||
scheduler = self.SCHEDULERS[0]
|
||||
@ -707,8 +724,6 @@ class KSampler:
|
||||
sampler = self.SAMPLERS[0]
|
||||
self.scheduler = scheduler
|
||||
self.sampler = sampler
|
||||
self.sigma_min=float(self.model_wrap.sigma_min)
|
||||
self.sigma_max=float(self.model_wrap.sigma_max)
|
||||
self.set_steps(steps, denoise)
|
||||
self.denoise = denoise
|
||||
self.model_options = model_options
|
||||
@ -721,20 +736,7 @@ class KSampler:
|
||||
steps += 1
|
||||
discard_penultimate_sigma = True
|
||||
|
||||
if self.scheduler == "karras":
|
||||
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
|
||||
elif self.scheduler == "exponential":
|
||||
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
|
||||
elif self.scheduler == "normal":
|
||||
sigmas = self.model_wrap.get_sigmas(steps)
|
||||
elif self.scheduler == "simple":
|
||||
sigmas = simple_scheduler(self.model_wrap, steps)
|
||||
elif self.scheduler == "ddim_uniform":
|
||||
sigmas = ddim_scheduler(self.model_wrap, steps)
|
||||
elif self.scheduler == "sgm_uniform":
|
||||
sigmas = sgm_scheduler(self.model_wrap, steps)
|
||||
else:
|
||||
print("error invalid scheduler", self.scheduler)
|
||||
sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps)
|
||||
|
||||
if discard_penultimate_sigma:
|
||||
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
||||
@ -752,10 +754,8 @@ class KSampler:
|
||||
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
|
||||
if sigmas is None:
|
||||
sigmas = self.sigmas
|
||||
sigma_min = self.sigma_min
|
||||
|
||||
if last_step is not None and last_step < (len(sigmas) - 1):
|
||||
sigma_min = sigmas[last_step]
|
||||
sigmas = sigmas[:last_step + 1]
|
||||
if force_full_denoise:
|
||||
sigmas[-1] = 0
|
||||
|
Loading…
Reference in New Issue
Block a user