mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-04-20 03:13:30 +00:00
Move model sampling code to comfy/model_sampling.py
This commit is contained in:
parent
ae2acfc21b
commit
1ffa8858e7
@ -1,11 +1,9 @@
|
|||||||
import torch
|
import torch
|
||||||
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
|
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
|
||||||
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
||||||
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
|
|
||||||
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
|
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
|
||||||
import comfy.model_management
|
import comfy.model_management
|
||||||
import comfy.conds
|
import comfy.conds
|
||||||
import numpy as np
|
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from . import utils
|
from . import utils
|
||||||
|
|
||||||
@ -14,79 +12,7 @@ class ModelType(Enum):
|
|||||||
V_PREDICTION = 2
|
V_PREDICTION = 2
|
||||||
|
|
||||||
|
|
||||||
#NOTE: all this sampling stuff will be moved
|
from comfy.model_sampling import EPS, V_PREDICTION, ModelSamplingDiscrete
|
||||||
class EPS:
|
|
||||||
def calculate_input(self, sigma, noise):
|
|
||||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
|
||||||
return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
|
||||||
|
|
||||||
def calculate_denoised(self, sigma, model_output, model_input):
|
|
||||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
|
||||||
return model_input - model_output * sigma
|
|
||||||
|
|
||||||
|
|
||||||
class V_PREDICTION(EPS):
|
|
||||||
def calculate_denoised(self, sigma, model_output, model_input):
|
|
||||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
|
||||||
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
|
||||||
|
|
||||||
|
|
||||||
class ModelSamplingDiscrete(torch.nn.Module):
|
|
||||||
def __init__(self, model_config=None):
|
|
||||||
super().__init__()
|
|
||||||
beta_schedule = "linear"
|
|
||||||
if model_config is not None:
|
|
||||||
beta_schedule = model_config.beta_schedule
|
|
||||||
self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
|
|
||||||
self.sigma_data = 1.0
|
|
||||||
|
|
||||||
def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
|
||||||
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
|
||||||
if given_betas is not None:
|
|
||||||
betas = given_betas
|
|
||||||
else:
|
|
||||||
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
|
||||||
alphas = 1. - betas
|
|
||||||
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32)
|
|
||||||
# alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
|
||||||
|
|
||||||
timesteps, = betas.shape
|
|
||||||
self.num_timesteps = int(timesteps)
|
|
||||||
self.linear_start = linear_start
|
|
||||||
self.linear_end = linear_end
|
|
||||||
|
|
||||||
# self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
|
|
||||||
# self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
|
|
||||||
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
|
|
||||||
|
|
||||||
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
|
||||||
|
|
||||||
self.register_buffer('sigmas', sigmas)
|
|
||||||
self.register_buffer('log_sigmas', sigmas.log())
|
|
||||||
|
|
||||||
@property
|
|
||||||
def sigma_min(self):
|
|
||||||
return self.sigmas[0]
|
|
||||||
|
|
||||||
@property
|
|
||||||
def sigma_max(self):
|
|
||||||
return self.sigmas[-1]
|
|
||||||
|
|
||||||
def timestep(self, sigma):
|
|
||||||
log_sigma = sigma.log()
|
|
||||||
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
|
|
||||||
return dists.abs().argmin(dim=0).view(sigma.shape)
|
|
||||||
|
|
||||||
def sigma(self, timestep):
|
|
||||||
t = torch.clamp(timestep.float(), min=0, max=(len(self.sigmas) - 1))
|
|
||||||
low_idx = t.floor().long()
|
|
||||||
high_idx = t.ceil().long()
|
|
||||||
w = t.frac()
|
|
||||||
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
|
|
||||||
return log_sigma.exp()
|
|
||||||
|
|
||||||
def percent_to_sigma(self, percent):
|
|
||||||
return self.sigma(torch.tensor(percent * 999.0))
|
|
||||||
|
|
||||||
def model_sampling(model_config, model_type):
|
def model_sampling(model_config, model_type):
|
||||||
if model_type == ModelType.EPS:
|
if model_type == ModelType.EPS:
|
||||||
@ -102,7 +28,6 @@ def model_sampling(model_config, model_type):
|
|||||||
return ModelSampling(model_config)
|
return ModelSampling(model_config)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class BaseModel(torch.nn.Module):
|
class BaseModel(torch.nn.Module):
|
||||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
78
comfy/model_sampling.py
Normal file
78
comfy/model_sampling.py
Normal file
@ -0,0 +1,78 @@
|
|||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
|
||||||
|
|
||||||
|
|
||||||
|
class EPS:
|
||||||
|
def calculate_input(self, sigma, noise):
|
||||||
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
||||||
|
return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||||
|
|
||||||
|
def calculate_denoised(self, sigma, model_output, model_input):
|
||||||
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||||
|
return model_input - model_output * sigma
|
||||||
|
|
||||||
|
|
||||||
|
class V_PREDICTION(EPS):
|
||||||
|
def calculate_denoised(self, sigma, model_output, model_input):
|
||||||
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||||
|
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||||||
|
|
||||||
|
|
||||||
|
class ModelSamplingDiscrete(torch.nn.Module):
|
||||||
|
def __init__(self, model_config=None):
|
||||||
|
super().__init__()
|
||||||
|
beta_schedule = "linear"
|
||||||
|
if model_config is not None:
|
||||||
|
beta_schedule = model_config.beta_schedule
|
||||||
|
self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
|
||||||
|
self.sigma_data = 1.0
|
||||||
|
|
||||||
|
def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
||||||
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||||
|
if given_betas is not None:
|
||||||
|
betas = given_betas
|
||||||
|
else:
|
||||||
|
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
||||||
|
alphas = 1. - betas
|
||||||
|
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32)
|
||||||
|
# alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
||||||
|
|
||||||
|
timesteps, = betas.shape
|
||||||
|
self.num_timesteps = int(timesteps)
|
||||||
|
self.linear_start = linear_start
|
||||||
|
self.linear_end = linear_end
|
||||||
|
|
||||||
|
# self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
|
||||||
|
# self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
|
||||||
|
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
|
||||||
|
|
||||||
|
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
||||||
|
|
||||||
|
self.register_buffer('sigmas', sigmas)
|
||||||
|
self.register_buffer('log_sigmas', sigmas.log())
|
||||||
|
|
||||||
|
@property
|
||||||
|
def sigma_min(self):
|
||||||
|
return self.sigmas[0]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def sigma_max(self):
|
||||||
|
return self.sigmas[-1]
|
||||||
|
|
||||||
|
def timestep(self, sigma):
|
||||||
|
log_sigma = sigma.log()
|
||||||
|
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
|
||||||
|
return dists.abs().argmin(dim=0).view(sigma.shape)
|
||||||
|
|
||||||
|
def sigma(self, timestep):
|
||||||
|
t = torch.clamp(timestep.float(), min=0, max=(len(self.sigmas) - 1))
|
||||||
|
low_idx = t.floor().long()
|
||||||
|
high_idx = t.ceil().long()
|
||||||
|
w = t.frac()
|
||||||
|
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
|
||||||
|
return log_sigma.exp()
|
||||||
|
|
||||||
|
def percent_to_sigma(self, percent):
|
||||||
|
return self.sigma(torch.tensor(percent * 999.0))
|
||||||
|
|
Loading…
Reference in New Issue
Block a user