Added Bayer dithering to Quantize node.

This commit is contained in:
tsone 2023-10-31 20:54:33 +01:00
parent c837a173fa
commit 23c5d17837

View File

@ -126,7 +126,7 @@ class Quantize:
"max": 256,
"step": 1
}),
"dither": (["none", "floyd-steinberg"],),
"dither": (["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"],),
},
}
@ -135,19 +135,47 @@ class Quantize:
CATEGORY = "image/postprocessing"
def quantize(self, image: torch.Tensor, colors: int = 256, dither: str = "FLOYDSTEINBERG"):
def bayer(im, pal_im, order):
def normalized_bayer_matrix(n):
if n == 0:
return np.zeros((1,1), "float32")
else:
q = 4 ** n
m = q * normalized_bayer_matrix(n - 1)
return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q
num_colors = len(pal_im.getpalette()) // 3
spread = 2 * 256 / num_colors
bayer_n = int(math.log2(order))
bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5)
result = torch.from_numpy(np.array(im).astype(np.float32))
tw = math.ceil(result.shape[0] / bayer_matrix.shape[0])
th = math.ceil(result.shape[1] / bayer_matrix.shape[1])
tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1)
result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255)
result = result.to(dtype=torch.uint8)
im = Image.fromarray(result.cpu().numpy())
im = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
return im
def quantize(self, image: torch.Tensor, colors: int, dither: str):
batch_size, height, width, _ = image.shape
result = torch.zeros_like(image)
dither_option = Image.Dither.FLOYDSTEINBERG if dither == "floyd-steinberg" else Image.Dither.NONE
for b in range(batch_size):
tensor_image = image[b]
img = (tensor_image * 255).to(torch.uint8).numpy()
pil_image = Image.fromarray(img, mode='RGB')
im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB')
palette = pil_image.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
quantized_image = pil_image.quantize(colors=colors, palette=palette, dither=dither_option)
pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
if dither == "none":
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
elif dither == "floyd-steinberg":
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG)
elif dither.startswith("bayer"):
order = int(dither.split('-')[-1])
quantized_image = Quantize.bayer(im, pal_im, order)
quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
result[b] = quantized_array