diff --git a/comfy/sd.py b/comfy/sd.py index 8aba5d65..748f6c1e 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -120,6 +120,7 @@ class CLIP: self.layer_idx = None self.use_clip_schedule = False logging.info("CLIP/text encoder model load device: {}, offload device: {}, current: {}, dtype: {}".format(load_device, offload_device, params['device'], dtype)) + self.tokenizer_options = {} def clone(self): n = CLIP(no_init=True) @@ -127,6 +128,7 @@ class CLIP: n.cond_stage_model = self.cond_stage_model n.tokenizer = self.tokenizer n.layer_idx = self.layer_idx + n.tokenizer_options = self.tokenizer_options.copy() n.use_clip_schedule = self.use_clip_schedule n.apply_hooks_to_conds = self.apply_hooks_to_conds return n @@ -134,10 +136,18 @@ class CLIP: def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): return self.patcher.add_patches(patches, strength_patch, strength_model) + def set_tokenizer_option(self, option_name, value): + self.tokenizer_options[option_name] = value + def clip_layer(self, layer_idx): self.layer_idx = layer_idx def tokenize(self, text, return_word_ids=False, **kwargs): + tokenizer_options = kwargs.get("tokenizer_options", {}) + if len(self.tokenizer_options) > 0: + tokenizer_options = {**self.tokenizer_options, **tokenizer_options} + if len(tokenizer_options) > 0: + kwargs["tokenizer_options"] = tokenizer_options return self.tokenizer.tokenize_with_weights(text, return_word_ids, **kwargs) def add_hooks_to_dict(self, pooled_dict: dict[str]): diff --git a/comfy/sd1_clip.py b/comfy/sd1_clip.py index 2ca5ed9b..ac61babe 100644 --- a/comfy/sd1_clip.py +++ b/comfy/sd1_clip.py @@ -457,13 +457,14 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No return embed_out class SDTokenizer: - def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, tokenizer_data={}, tokenizer_args={}): + def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, tokenizer_data={}, tokenizer_args={}): if tokenizer_path is None: tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer") self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args) self.max_length = tokenizer_data.get("{}_max_length".format(embedding_key), max_length) self.min_length = min_length self.end_token = None + self.min_padding = min_padding empty = self.tokenizer('')["input_ids"] self.tokenizer_adds_end_token = has_end_token @@ -518,13 +519,15 @@ class SDTokenizer: return (embed, leftover) - def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): + def tokenize_with_weights(self, text:str, return_word_ids=False, tokenizer_options={}, **kwargs): ''' Takes a prompt and converts it to a list of (token, weight, word id) elements. Tokens can both be integer tokens and pre computed CLIP tensors. Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens. Returned list has the dimensions NxM where M is the input size of CLIP ''' + min_length = tokenizer_options.get("{}_min_length".format(self.embedding_key), self.min_length) + min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding) text = escape_important(text) parsed_weights = token_weights(text, 1.0) @@ -603,10 +606,12 @@ class SDTokenizer: #fill last batch if self.end_token is not None: batch.append((self.end_token, 1.0, 0)) - if self.pad_to_max_length: + if min_padding is not None: + batch.extend([(self.pad_token, 1.0, 0)] * min_padding) + if self.pad_to_max_length and len(batch) < self.max_length: batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch))) - if self.min_length is not None and len(batch) < self.min_length: - batch.extend([(self.pad_token, 1.0, 0)] * (self.min_length - len(batch))) + if min_length is not None and len(batch) < min_length: + batch.extend([(self.pad_token, 1.0, 0)] * (min_length - len(batch))) if not return_word_ids: batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens] @@ -634,7 +639,7 @@ class SD1Tokenizer: def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): out = {} - out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids) + out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids, **kwargs) return out def untokenize(self, token_weight_pair): diff --git a/comfy/sdxl_clip.py b/comfy/sdxl_clip.py index ea7f5d10..c8cef14e 100644 --- a/comfy/sdxl_clip.py +++ b/comfy/sdxl_clip.py @@ -28,8 +28,8 @@ class SDXLTokenizer: def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): out = {} - out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids) - out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) + out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs) + out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs) return out def untokenize(self, token_weight_pair): diff --git a/comfy/text_encoders/flux.py b/comfy/text_encoders/flux.py index 0666dde7..d61ef666 100644 --- a/comfy/text_encoders/flux.py +++ b/comfy/text_encoders/flux.py @@ -19,8 +19,8 @@ class FluxTokenizer: def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): out = {} - out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) - out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids) + out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs) + out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs) return out def untokenize(self, token_weight_pair): diff --git a/comfy/text_encoders/hidream.py b/comfy/text_encoders/hidream.py index 8e1abcfc..dbcf5278 100644 --- a/comfy/text_encoders/hidream.py +++ b/comfy/text_encoders/hidream.py @@ -16,11 +16,11 @@ class HiDreamTokenizer: def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): out = {} - out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids) - out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) - t5xxl = self.t5xxl.tokenize_with_weights(text, return_word_ids) + out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs) + out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs) + t5xxl = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs) out["t5xxl"] = [t5xxl[0]] # Use only first 128 tokens - out["llama"] = self.llama.tokenize_with_weights(text, return_word_ids) + out["llama"] = self.llama.tokenize_with_weights(text, return_word_ids, **kwargs) return out def untokenize(self, token_weight_pair): diff --git a/comfy/text_encoders/hunyuan_video.py b/comfy/text_encoders/hunyuan_video.py index 33ac2249..b02148b3 100644 --- a/comfy/text_encoders/hunyuan_video.py +++ b/comfy/text_encoders/hunyuan_video.py @@ -49,13 +49,13 @@ class HunyuanVideoTokenizer: def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, image_embeds=None, image_interleave=1, **kwargs): out = {} - out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) + out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs) if llama_template is None: llama_text = self.llama_template.format(text) else: llama_text = llama_template.format(text) - llama_text_tokens = self.llama.tokenize_with_weights(llama_text, return_word_ids) + llama_text_tokens = self.llama.tokenize_with_weights(llama_text, return_word_ids, **kwargs) embed_count = 0 for r in llama_text_tokens: for i in range(len(r)): diff --git a/comfy/text_encoders/hydit.py b/comfy/text_encoders/hydit.py index e7273f42..ac699452 100644 --- a/comfy/text_encoders/hydit.py +++ b/comfy/text_encoders/hydit.py @@ -41,8 +41,8 @@ class HyditTokenizer: def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): out = {} - out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids) - out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids) + out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids, **kwargs) + out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids, **kwargs) return out def untokenize(self, token_weight_pair): diff --git a/comfy/text_encoders/sd3_clip.py b/comfy/text_encoders/sd3_clip.py index 6c2fbeca..ff5d412d 100644 --- a/comfy/text_encoders/sd3_clip.py +++ b/comfy/text_encoders/sd3_clip.py @@ -45,9 +45,9 @@ class SD3Tokenizer: def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): out = {} - out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids) - out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) - out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids) + out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs) + out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs) + out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs) return out def untokenize(self, token_weight_pair): diff --git a/comfy_extras/nodes_cond.py b/comfy_extras/nodes_cond.py index 4c3a1d5b..57426217 100644 --- a/comfy_extras/nodes_cond.py +++ b/comfy_extras/nodes_cond.py @@ -20,6 +20,29 @@ class CLIPTextEncodeControlnet: c.append(n) return (c, ) +class T5TokenizerOptions: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "clip": ("CLIP", ), + "min_padding": ("INT", {"default": 0, "min": 0, "max": 10000, "step": 1}), + "min_length": ("INT", {"default": 0, "min": 0, "max": 10000, "step": 1}), + } + } + + RETURN_TYPES = ("CLIP",) + FUNCTION = "set_options" + + def set_options(self, clip, min_padding, min_length): + clip = clip.clone() + for t5_type in ["t5xxl", "pile_t5xl", "t5base", "mt5xl", "umt5xxl"]: + clip.set_tokenizer_option("{}_min_padding".format(t5_type), min_padding) + clip.set_tokenizer_option("{}_min_length".format(t5_type), min_length) + + return (clip, ) + NODE_CLASS_MAPPINGS = { - "CLIPTextEncodeControlnet": CLIPTextEncodeControlnet + "CLIPTextEncodeControlnet": CLIPTextEncodeControlnet, + "T5TokenizerOptions": T5TokenizerOptions, }