mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Merge branch 'comfyanonymous:master' into socketrework
This commit is contained in:
commit
2816eb236d
@ -833,7 +833,7 @@ def expand_dims(v, dims):
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
def sample_unipc(model, noise, image, sigmas, sampling_function, extra_args=None, callback=None, disable=None, noise_mask=None):
|
def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, extra_args=None, callback=None, disable=None, noise_mask=None, variant='bh1'):
|
||||||
to_zero = False
|
to_zero = False
|
||||||
if sigmas[-1] == 0:
|
if sigmas[-1] == 0:
|
||||||
timesteps = torch.nn.functional.interpolate(sigmas[None,None,:-1], size=(len(sigmas),), mode='linear')[0][0]
|
timesteps = torch.nn.functional.interpolate(sigmas[None,None,:-1], size=(len(sigmas),), mode='linear')[0][0]
|
||||||
@ -847,7 +847,12 @@ def sample_unipc(model, noise, image, sigmas, sampling_function, extra_args=None
|
|||||||
ns = NoiseScheduleVP('discrete', alphas_cumprod=model.inner_model.alphas_cumprod)
|
ns = NoiseScheduleVP('discrete', alphas_cumprod=model.inner_model.alphas_cumprod)
|
||||||
|
|
||||||
if image is not None:
|
if image is not None:
|
||||||
img = image * ns.marginal_alpha(timesteps[0]) + noise * ns.marginal_std(timesteps[0])
|
img = image * ns.marginal_alpha(timesteps[0])
|
||||||
|
if max_denoise:
|
||||||
|
noise_mult = 1.0
|
||||||
|
else:
|
||||||
|
noise_mult = ns.marginal_std(timesteps[0])
|
||||||
|
img += noise * noise_mult
|
||||||
else:
|
else:
|
||||||
img = noise
|
img = noise
|
||||||
|
|
||||||
@ -870,7 +875,7 @@ def sample_unipc(model, noise, image, sigmas, sampling_function, extra_args=None
|
|||||||
model_kwargs=extra_args,
|
model_kwargs=extra_args,
|
||||||
)
|
)
|
||||||
|
|
||||||
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, noise_mask=noise_mask, masked_image=image, noise=noise)
|
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, noise_mask=noise_mask, masked_image=image, noise=noise, variant=variant)
|
||||||
x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=3, lower_order_final=True)
|
x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=3, lower_order_final=True)
|
||||||
if not to_zero:
|
if not to_zero:
|
||||||
x /= ns.marginal_alpha(timesteps[-1])
|
x /= ns.marginal_alpha(timesteps[-1])
|
||||||
|
@ -22,11 +22,15 @@ class DDIMSampler(object):
|
|||||||
setattr(self, name, attr)
|
setattr(self, name, attr)
|
||||||
|
|
||||||
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
||||||
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
||||||
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
||||||
|
self.make_schedule_timesteps(ddim_timesteps, ddim_eta=ddim_eta, verbose=verbose)
|
||||||
|
|
||||||
|
def make_schedule_timesteps(self, ddim_timesteps, ddim_eta=0., verbose=True):
|
||||||
|
self.ddim_timesteps = torch.tensor(ddim_timesteps)
|
||||||
alphas_cumprod = self.model.alphas_cumprod
|
alphas_cumprod = self.model.alphas_cumprod
|
||||||
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
||||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device)
|
||||||
|
|
||||||
self.register_buffer('betas', to_torch(self.model.betas))
|
self.register_buffer('betas', to_torch(self.model.betas))
|
||||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||||
@ -52,6 +56,58 @@ class DDIMSampler(object):
|
|||||||
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
||||||
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def sample_custom(self,
|
||||||
|
ddim_timesteps,
|
||||||
|
conditioning,
|
||||||
|
callback=None,
|
||||||
|
img_callback=None,
|
||||||
|
quantize_x0=False,
|
||||||
|
eta=0.,
|
||||||
|
mask=None,
|
||||||
|
x0=None,
|
||||||
|
temperature=1.,
|
||||||
|
noise_dropout=0.,
|
||||||
|
score_corrector=None,
|
||||||
|
corrector_kwargs=None,
|
||||||
|
verbose=True,
|
||||||
|
x_T=None,
|
||||||
|
log_every_t=100,
|
||||||
|
unconditional_guidance_scale=1.,
|
||||||
|
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||||
|
dynamic_threshold=None,
|
||||||
|
ucg_schedule=None,
|
||||||
|
denoise_function=None,
|
||||||
|
cond_concat=None,
|
||||||
|
to_zero=True,
|
||||||
|
end_step=None,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
self.make_schedule_timesteps(ddim_timesteps=ddim_timesteps, ddim_eta=eta, verbose=verbose)
|
||||||
|
samples, intermediates = self.ddim_sampling(conditioning, x_T.shape,
|
||||||
|
callback=callback,
|
||||||
|
img_callback=img_callback,
|
||||||
|
quantize_denoised=quantize_x0,
|
||||||
|
mask=mask, x0=x0,
|
||||||
|
ddim_use_original_steps=False,
|
||||||
|
noise_dropout=noise_dropout,
|
||||||
|
temperature=temperature,
|
||||||
|
score_corrector=score_corrector,
|
||||||
|
corrector_kwargs=corrector_kwargs,
|
||||||
|
x_T=x_T,
|
||||||
|
log_every_t=log_every_t,
|
||||||
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||||
|
unconditional_conditioning=unconditional_conditioning,
|
||||||
|
dynamic_threshold=dynamic_threshold,
|
||||||
|
ucg_schedule=ucg_schedule,
|
||||||
|
denoise_function=denoise_function,
|
||||||
|
cond_concat=cond_concat,
|
||||||
|
to_zero=to_zero,
|
||||||
|
end_step=end_step
|
||||||
|
)
|
||||||
|
return samples, intermediates
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def sample(self,
|
def sample(self,
|
||||||
S,
|
S,
|
||||||
@ -116,7 +172,9 @@ class DDIMSampler(object):
|
|||||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||||
unconditional_conditioning=unconditional_conditioning,
|
unconditional_conditioning=unconditional_conditioning,
|
||||||
dynamic_threshold=dynamic_threshold,
|
dynamic_threshold=dynamic_threshold,
|
||||||
ucg_schedule=ucg_schedule
|
ucg_schedule=ucg_schedule,
|
||||||
|
denoise_function=None,
|
||||||
|
cond_concat=None
|
||||||
)
|
)
|
||||||
return samples, intermediates
|
return samples, intermediates
|
||||||
|
|
||||||
@ -127,7 +185,7 @@ class DDIMSampler(object):
|
|||||||
mask=None, x0=None, img_callback=None, log_every_t=100,
|
mask=None, x0=None, img_callback=None, log_every_t=100,
|
||||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||||
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
||||||
ucg_schedule=None):
|
ucg_schedule=None, denoise_function=None, cond_concat=None, to_zero=True, end_step=None):
|
||||||
device = self.model.betas.device
|
device = self.model.betas.device
|
||||||
b = shape[0]
|
b = shape[0]
|
||||||
if x_T is None:
|
if x_T is None:
|
||||||
@ -142,11 +200,11 @@ class DDIMSampler(object):
|
|||||||
timesteps = self.ddim_timesteps[:subset_end]
|
timesteps = self.ddim_timesteps[:subset_end]
|
||||||
|
|
||||||
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
||||||
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else timesteps.flip(0)
|
||||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||||
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
# print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||||
|
|
||||||
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
iterator = tqdm(time_range[:end_step], desc='DDIM Sampler', total=end_step)
|
||||||
|
|
||||||
for i, step in enumerate(iterator):
|
for i, step in enumerate(iterator):
|
||||||
index = total_steps - i - 1
|
index = total_steps - i - 1
|
||||||
@ -167,7 +225,7 @@ class DDIMSampler(object):
|
|||||||
corrector_kwargs=corrector_kwargs,
|
corrector_kwargs=corrector_kwargs,
|
||||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||||
unconditional_conditioning=unconditional_conditioning,
|
unconditional_conditioning=unconditional_conditioning,
|
||||||
dynamic_threshold=dynamic_threshold)
|
dynamic_threshold=dynamic_threshold, denoise_function=denoise_function, cond_concat=cond_concat)
|
||||||
img, pred_x0 = outs
|
img, pred_x0 = outs
|
||||||
if callback: callback(i)
|
if callback: callback(i)
|
||||||
if img_callback: img_callback(pred_x0, i)
|
if img_callback: img_callback(pred_x0, i)
|
||||||
@ -176,16 +234,27 @@ class DDIMSampler(object):
|
|||||||
intermediates['x_inter'].append(img)
|
intermediates['x_inter'].append(img)
|
||||||
intermediates['pred_x0'].append(pred_x0)
|
intermediates['pred_x0'].append(pred_x0)
|
||||||
|
|
||||||
|
if to_zero:
|
||||||
|
img = pred_x0
|
||||||
|
else:
|
||||||
|
if ddim_use_original_steps:
|
||||||
|
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
||||||
|
else:
|
||||||
|
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
||||||
|
img /= sqrt_alphas_cumprod[index - 1]
|
||||||
|
|
||||||
return img, intermediates
|
return img, intermediates
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||||
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
||||||
dynamic_threshold=None):
|
dynamic_threshold=None, denoise_function=None, cond_concat=None):
|
||||||
b, *_, device = *x.shape, x.device
|
b, *_, device = *x.shape, x.device
|
||||||
|
|
||||||
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
if denoise_function is not None:
|
||||||
|
model_output = denoise_function(self.model.apply_model, x, t, unconditional_conditioning, c, unconditional_guidance_scale, cond_concat)
|
||||||
|
elif unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||||
model_output = self.model.apply_model(x, t, c)
|
model_output = self.model.apply_model(x, t, c)
|
||||||
else:
|
else:
|
||||||
x_in = torch.cat([x] * 2)
|
x_in = torch.cat([x] * 2)
|
||||||
@ -299,7 +368,7 @@ class DDIMSampler(object):
|
|||||||
return x_next, out
|
return x_next, out
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None, max_denoise=False):
|
||||||
# fast, but does not allow for exact reconstruction
|
# fast, but does not allow for exact reconstruction
|
||||||
# t serves as an index to gather the correct alphas
|
# t serves as an index to gather the correct alphas
|
||||||
if use_original_steps:
|
if use_original_steps:
|
||||||
@ -311,8 +380,12 @@ class DDIMSampler(object):
|
|||||||
|
|
||||||
if noise is None:
|
if noise is None:
|
||||||
noise = torch.randn_like(x0)
|
noise = torch.randn_like(x0)
|
||||||
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
if max_denoise:
|
||||||
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
noise_multiplier = 1.0
|
||||||
|
else:
|
||||||
|
noise_multiplier = extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape)
|
||||||
|
|
||||||
|
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + noise_multiplier * noise)
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
||||||
|
@ -343,7 +343,7 @@ class CrossAttentionDoggettx(nn.Module):
|
|||||||
|
|
||||||
return self.to_out(r2)
|
return self.to_out(r2)
|
||||||
|
|
||||||
class OriginalCrossAttention(nn.Module):
|
class CrossAttention(nn.Module):
|
||||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
inner_dim = dim_head * heads
|
inner_dim = dim_head * heads
|
||||||
@ -395,14 +395,13 @@ class OriginalCrossAttention(nn.Module):
|
|||||||
return self.to_out(out)
|
return self.to_out(out)
|
||||||
|
|
||||||
import sys
|
import sys
|
||||||
if "--use-split-cross-attention" in sys.argv:
|
if XFORMERS_IS_AVAILBLE == False:
|
||||||
print("Using split optimization for cross attention")
|
if "--use-split-cross-attention" in sys.argv:
|
||||||
class CrossAttention(CrossAttentionDoggettx):
|
print("Using split optimization for cross attention")
|
||||||
pass
|
CrossAttention = CrossAttentionDoggettx
|
||||||
else:
|
else:
|
||||||
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
|
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
|
||||||
class CrossAttention(CrossAttentionBirchSan):
|
CrossAttention = CrossAttentionBirchSan
|
||||||
pass
|
|
||||||
|
|
||||||
class MemoryEfficientCrossAttention(nn.Module):
|
class MemoryEfficientCrossAttention(nn.Module):
|
||||||
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
||||||
|
@ -4,6 +4,8 @@ from .extra_samplers import uni_pc
|
|||||||
import torch
|
import torch
|
||||||
import contextlib
|
import contextlib
|
||||||
import model_management
|
import model_management
|
||||||
|
from .ldm.models.diffusion.ddim import DDIMSampler
|
||||||
|
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
|
||||||
|
|
||||||
class CFGDenoiser(torch.nn.Module):
|
class CFGDenoiser(torch.nn.Module):
|
||||||
def __init__(self, model):
|
def __init__(self, model):
|
||||||
@ -234,6 +236,14 @@ def simple_scheduler(model, steps):
|
|||||||
sigs += [0.0]
|
sigs += [0.0]
|
||||||
return torch.FloatTensor(sigs)
|
return torch.FloatTensor(sigs)
|
||||||
|
|
||||||
|
def ddim_scheduler(model, steps):
|
||||||
|
sigs = []
|
||||||
|
ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False)
|
||||||
|
for x in range(len(ddim_timesteps) - 1, -1, -1):
|
||||||
|
sigs.append(model.t_to_sigma(torch.tensor(ddim_timesteps[x])))
|
||||||
|
sigs += [0.0]
|
||||||
|
return torch.FloatTensor(sigs)
|
||||||
|
|
||||||
def blank_inpaint_image_like(latent_image):
|
def blank_inpaint_image_like(latent_image):
|
||||||
blank_image = torch.ones_like(latent_image)
|
blank_image = torch.ones_like(latent_image)
|
||||||
# these are the values for "zero" in pixel space translated to latent space
|
# these are the values for "zero" in pixel space translated to latent space
|
||||||
@ -310,10 +320,10 @@ def apply_control_net_to_equal_area(conds, uncond):
|
|||||||
uncond[temp[1]] = [o[0], n]
|
uncond[temp[1]] = [o[0], n]
|
||||||
|
|
||||||
class KSampler:
|
class KSampler:
|
||||||
SCHEDULERS = ["karras", "normal", "simple"]
|
SCHEDULERS = ["karras", "normal", "simple", "ddim_uniform"]
|
||||||
SAMPLERS = ["sample_euler", "sample_euler_ancestral", "sample_heun", "sample_dpm_2", "sample_dpm_2_ancestral",
|
SAMPLERS = ["sample_euler", "sample_euler_ancestral", "sample_heun", "sample_dpm_2", "sample_dpm_2_ancestral",
|
||||||
"sample_lms", "sample_dpm_fast", "sample_dpm_adaptive", "sample_dpmpp_2s_ancestral", "sample_dpmpp_sde",
|
"sample_lms", "sample_dpm_fast", "sample_dpm_adaptive", "sample_dpmpp_2s_ancestral", "sample_dpmpp_sde",
|
||||||
"sample_dpmpp_2m", "uni_pc"]
|
"sample_dpmpp_2m", "ddim", "uni_pc", "uni_pc_bh2"]
|
||||||
|
|
||||||
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None):
|
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None):
|
||||||
self.model = model
|
self.model = model
|
||||||
@ -334,6 +344,7 @@ class KSampler:
|
|||||||
self.sigma_min=float(self.model_wrap.sigma_min)
|
self.sigma_min=float(self.model_wrap.sigma_min)
|
||||||
self.sigma_max=float(self.model_wrap.sigma_max)
|
self.sigma_max=float(self.model_wrap.sigma_max)
|
||||||
self.set_steps(steps, denoise)
|
self.set_steps(steps, denoise)
|
||||||
|
self.denoise = denoise
|
||||||
|
|
||||||
def _calculate_sigmas(self, steps):
|
def _calculate_sigmas(self, steps):
|
||||||
sigmas = None
|
sigmas = None
|
||||||
@ -349,6 +360,8 @@ class KSampler:
|
|||||||
sigmas = self.model_wrap.get_sigmas(steps).to(self.device)
|
sigmas = self.model_wrap.get_sigmas(steps).to(self.device)
|
||||||
elif self.scheduler == "simple":
|
elif self.scheduler == "simple":
|
||||||
sigmas = simple_scheduler(self.model_wrap, steps).to(self.device)
|
sigmas = simple_scheduler(self.model_wrap, steps).to(self.device)
|
||||||
|
elif self.scheduler == "ddim_uniform":
|
||||||
|
sigmas = ddim_scheduler(self.model_wrap, steps).to(self.device)
|
||||||
else:
|
else:
|
||||||
print("error invalid scheduler", self.scheduler)
|
print("error invalid scheduler", self.scheduler)
|
||||||
|
|
||||||
@ -402,6 +415,7 @@ class KSampler:
|
|||||||
|
|
||||||
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg}
|
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg}
|
||||||
|
|
||||||
|
cond_concat = None
|
||||||
if hasattr(self.model, 'concat_keys'):
|
if hasattr(self.model, 'concat_keys'):
|
||||||
cond_concat = []
|
cond_concat = []
|
||||||
for ck in self.model.concat_keys:
|
for ck in self.model.concat_keys:
|
||||||
@ -417,9 +431,42 @@ class KSampler:
|
|||||||
cond_concat.append(blank_inpaint_image_like(noise))
|
cond_concat.append(blank_inpaint_image_like(noise))
|
||||||
extra_args["cond_concat"] = cond_concat
|
extra_args["cond_concat"] = cond_concat
|
||||||
|
|
||||||
|
if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
|
||||||
|
max_denoise = False
|
||||||
|
else:
|
||||||
|
max_denoise = True
|
||||||
|
|
||||||
with precision_scope(self.device):
|
with precision_scope(self.device):
|
||||||
if self.sampler == "uni_pc":
|
if self.sampler == "uni_pc":
|
||||||
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, extra_args=extra_args, noise_mask=denoise_mask)
|
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask)
|
||||||
|
elif self.sampler == "uni_pc_bh2":
|
||||||
|
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, variant='bh2')
|
||||||
|
elif self.sampler == "ddim":
|
||||||
|
timesteps = []
|
||||||
|
for s in range(sigmas.shape[0]):
|
||||||
|
timesteps.insert(0, self.model_wrap.sigma_to_t(sigmas[s]))
|
||||||
|
noise_mask = None
|
||||||
|
if denoise_mask is not None:
|
||||||
|
noise_mask = 1.0 - denoise_mask
|
||||||
|
sampler = DDIMSampler(self.model)
|
||||||
|
sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
|
||||||
|
z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
|
||||||
|
samples, _ = sampler.sample_custom(ddim_timesteps=timesteps,
|
||||||
|
conditioning=positive,
|
||||||
|
batch_size=noise.shape[0],
|
||||||
|
shape=noise.shape[1:],
|
||||||
|
verbose=False,
|
||||||
|
unconditional_guidance_scale=cfg,
|
||||||
|
unconditional_conditioning=negative,
|
||||||
|
eta=0.0,
|
||||||
|
x_T=z_enc,
|
||||||
|
x0=latent_image,
|
||||||
|
denoise_function=sampling_function,
|
||||||
|
cond_concat=cond_concat,
|
||||||
|
mask=noise_mask,
|
||||||
|
to_zero=sigmas[-1]==0,
|
||||||
|
end_step=sigmas.shape[0] - 1)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
extra_args["denoise_mask"] = denoise_mask
|
extra_args["denoise_mask"] = denoise_mask
|
||||||
self.model_k.latent_image = latent_image
|
self.model_k.latent_image = latent_image
|
||||||
|
17
comfy/sd.py
17
comfy/sd.py
@ -400,7 +400,7 @@ class ControlNet:
|
|||||||
out.append(self.control_model)
|
out.append(self.control_model)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def load_controlnet(ckpt_path):
|
def load_controlnet(ckpt_path, model=None):
|
||||||
controlnet_data = load_torch_file(ckpt_path)
|
controlnet_data = load_torch_file(ckpt_path)
|
||||||
pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
|
pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
|
||||||
pth = False
|
pth = False
|
||||||
@ -437,6 +437,21 @@ def load_controlnet(ckpt_path):
|
|||||||
use_fp16=use_fp16)
|
use_fp16=use_fp16)
|
||||||
|
|
||||||
if pth:
|
if pth:
|
||||||
|
if 'difference' in controlnet_data:
|
||||||
|
if model is not None:
|
||||||
|
m = model.patch_model()
|
||||||
|
model_sd = m.state_dict()
|
||||||
|
for x in controlnet_data:
|
||||||
|
c_m = "control_model."
|
||||||
|
if x.startswith(c_m):
|
||||||
|
sd_key = "model.diffusion_model.{}".format(x[len(c_m):])
|
||||||
|
if sd_key in model_sd:
|
||||||
|
cd = controlnet_data[x]
|
||||||
|
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
|
||||||
|
model.unpatch_model()
|
||||||
|
else:
|
||||||
|
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
|
||||||
|
|
||||||
class WeightsLoader(torch.nn.Module):
|
class WeightsLoader(torch.nn.Module):
|
||||||
pass
|
pass
|
||||||
w = WeightsLoader()
|
w = WeightsLoader()
|
||||||
|
36
nodes.py
36
nodes.py
@ -232,6 +232,24 @@ class ControlNetLoader:
|
|||||||
controlnet = comfy.sd.load_controlnet(controlnet_path)
|
controlnet = comfy.sd.load_controlnet(controlnet_path)
|
||||||
return (controlnet,)
|
return (controlnet,)
|
||||||
|
|
||||||
|
class DiffControlNetLoader:
|
||||||
|
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
|
||||||
|
controlnet_dir = os.path.join(models_dir, "controlnet")
|
||||||
|
@classmethod
|
||||||
|
def INPUT_TYPES(s):
|
||||||
|
return {"required": { "model": ("MODEL",),
|
||||||
|
"control_net_name": (filter_files_extensions(recursive_search(s.controlnet_dir), supported_pt_extensions), )}}
|
||||||
|
|
||||||
|
RETURN_TYPES = ("CONTROL_NET",)
|
||||||
|
FUNCTION = "load_controlnet"
|
||||||
|
|
||||||
|
CATEGORY = "loaders"
|
||||||
|
|
||||||
|
def load_controlnet(self, model, control_net_name):
|
||||||
|
controlnet_path = os.path.join(self.controlnet_dir, control_net_name)
|
||||||
|
controlnet = comfy.sd.load_controlnet(controlnet_path, model)
|
||||||
|
return (controlnet,)
|
||||||
|
|
||||||
|
|
||||||
class ControlNetApply:
|
class ControlNetApply:
|
||||||
@classmethod
|
@classmethod
|
||||||
@ -733,6 +751,22 @@ class ImageScale:
|
|||||||
s = s.movedim(1,-1)
|
s = s.movedim(1,-1)
|
||||||
return (s,)
|
return (s,)
|
||||||
|
|
||||||
|
class ImageInvert:
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def INPUT_TYPES(s):
|
||||||
|
return {"required": { "image": ("IMAGE",)}}
|
||||||
|
|
||||||
|
RETURN_TYPES = ("IMAGE",)
|
||||||
|
FUNCTION = "invert"
|
||||||
|
|
||||||
|
CATEGORY = "image"
|
||||||
|
|
||||||
|
def invert(self, image):
|
||||||
|
s = 1.0 - image
|
||||||
|
return (s,)
|
||||||
|
|
||||||
|
|
||||||
NODE_CLASS_MAPPINGS = {
|
NODE_CLASS_MAPPINGS = {
|
||||||
"KSampler": KSampler,
|
"KSampler": KSampler,
|
||||||
"CheckpointLoader": CheckpointLoader,
|
"CheckpointLoader": CheckpointLoader,
|
||||||
@ -747,6 +781,7 @@ NODE_CLASS_MAPPINGS = {
|
|||||||
"LoadImage": LoadImage,
|
"LoadImage": LoadImage,
|
||||||
"LoadImageMask": LoadImageMask,
|
"LoadImageMask": LoadImageMask,
|
||||||
"ImageScale": ImageScale,
|
"ImageScale": ImageScale,
|
||||||
|
"ImageInvert": ImageInvert,
|
||||||
"ConditioningCombine": ConditioningCombine,
|
"ConditioningCombine": ConditioningCombine,
|
||||||
"ConditioningSetArea": ConditioningSetArea,
|
"ConditioningSetArea": ConditioningSetArea,
|
||||||
"KSamplerAdvanced": KSamplerAdvanced,
|
"KSamplerAdvanced": KSamplerAdvanced,
|
||||||
@ -759,6 +794,7 @@ NODE_CLASS_MAPPINGS = {
|
|||||||
"CLIPLoader": CLIPLoader,
|
"CLIPLoader": CLIPLoader,
|
||||||
"ControlNetApply": ControlNetApply,
|
"ControlNetApply": ControlNetApply,
|
||||||
"ControlNetLoader": ControlNetLoader,
|
"ControlNetLoader": ControlNetLoader,
|
||||||
|
"DiffControlNetLoader": DiffControlNetLoader,
|
||||||
}
|
}
|
||||||
|
|
||||||
CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
|
CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
|
||||||
|
@ -85,7 +85,12 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"source": [
|
"source": [
|
||||||
"Run ComfyUI (use the fp16 model configs for more speed):"
|
"### Run ComfyUI \n",
|
||||||
|
"use the **fp16** model configs for more speed\n",
|
||||||
|
"\n",
|
||||||
|
"You should see the ui appear in an iframe. If you get a 403 error, it's your firefox settings or an extension that's messing things up.\n",
|
||||||
|
"\n",
|
||||||
|
"If you want to open it in another window use the second link not the first one.\n"
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"id": "gggggggggg"
|
"id": "gggggggggg"
|
||||||
@ -119,6 +124,52 @@
|
|||||||
},
|
},
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"outputs": []
|
"outputs": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"source": [
|
||||||
|
"### Run ComfyUI with localtunnel\n",
|
||||||
|
"\n",
|
||||||
|
"If you have issues with the previous way, you can try this way. It will also work on non colab.\n",
|
||||||
|
"\n",
|
||||||
|
"use the **fp16** model configs for more speed\n",
|
||||||
|
"\n"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"id": "kkkkkkkkkkkkkk"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"source": [
|
||||||
|
"!npm install -g localtunnel\n",
|
||||||
|
"\n",
|
||||||
|
"import subprocess\n",
|
||||||
|
"import threading\n",
|
||||||
|
"import time\n",
|
||||||
|
"import socket\n",
|
||||||
|
"def iframe_thread(port):\n",
|
||||||
|
" while True:\n",
|
||||||
|
" time.sleep(0.5)\n",
|
||||||
|
" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n",
|
||||||
|
" result = sock.connect_ex(('127.0.0.1', port))\n",
|
||||||
|
" if result == 0:\n",
|
||||||
|
" break\n",
|
||||||
|
" sock.close()\n",
|
||||||
|
" p = subprocess.Popen([\"lt\", \"--port\", \"{}\".format(port)], stdout=subprocess.PIPE)\n",
|
||||||
|
" for line in p.stdout:\n",
|
||||||
|
" print(line.decode(), end='')\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"threading.Thread(target=iframe_thread, daemon=True, args=(8188,)).start()\n",
|
||||||
|
"\n",
|
||||||
|
"!python main.py --highvram"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"id": "jjjjjjjjjjjjj"
|
||||||
|
},
|
||||||
|
"execution_count": null,
|
||||||
|
"outputs": []
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
}
|
}
|
117
script_examples/basic_api_example.py
Normal file
117
script_examples/basic_api_example.py
Normal file
@ -0,0 +1,117 @@
|
|||||||
|
import json
|
||||||
|
from urllib import request, parse
|
||||||
|
import random
|
||||||
|
|
||||||
|
#this is the ComfyUI api prompt format. If you want it for a specific workflow you can copy it from the prompt section
|
||||||
|
#of the image metadata of images generated with ComfyUI
|
||||||
|
#keep in mind ComfyUI is pre alpha software so this format will change a bit.
|
||||||
|
|
||||||
|
#this is the one for the default workflow
|
||||||
|
prompt_text = """
|
||||||
|
{
|
||||||
|
"3": {
|
||||||
|
"class_type": "KSampler",
|
||||||
|
"inputs": {
|
||||||
|
"cfg": 8,
|
||||||
|
"denoise": 1,
|
||||||
|
"latent_image": [
|
||||||
|
"5",
|
||||||
|
0
|
||||||
|
],
|
||||||
|
"model": [
|
||||||
|
"4",
|
||||||
|
0
|
||||||
|
],
|
||||||
|
"negative": [
|
||||||
|
"7",
|
||||||
|
0
|
||||||
|
],
|
||||||
|
"positive": [
|
||||||
|
"6",
|
||||||
|
0
|
||||||
|
],
|
||||||
|
"sampler_name": "sample_euler",
|
||||||
|
"scheduler": "normal",
|
||||||
|
"seed": 8566257,
|
||||||
|
"steps": 20
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"4": {
|
||||||
|
"class_type": "CheckpointLoader",
|
||||||
|
"inputs": {
|
||||||
|
"ckpt_name": "v1-5-pruned-emaonly.ckpt",
|
||||||
|
"config_name": "v1-inference.yaml"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"5": {
|
||||||
|
"class_type": "EmptyLatentImage",
|
||||||
|
"inputs": {
|
||||||
|
"batch_size": 1,
|
||||||
|
"height": 512,
|
||||||
|
"width": 512
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"6": {
|
||||||
|
"class_type": "CLIPTextEncode",
|
||||||
|
"inputs": {
|
||||||
|
"clip": [
|
||||||
|
"4",
|
||||||
|
1
|
||||||
|
],
|
||||||
|
"text": "masterpiece best quality girl"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"7": {
|
||||||
|
"class_type": "CLIPTextEncode",
|
||||||
|
"inputs": {
|
||||||
|
"clip": [
|
||||||
|
"4",
|
||||||
|
1
|
||||||
|
],
|
||||||
|
"text": "bad hands"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"8": {
|
||||||
|
"class_type": "VAEDecode",
|
||||||
|
"inputs": {
|
||||||
|
"samples": [
|
||||||
|
"3",
|
||||||
|
0
|
||||||
|
],
|
||||||
|
"vae": [
|
||||||
|
"4",
|
||||||
|
2
|
||||||
|
]
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"9": {
|
||||||
|
"class_type": "SaveImage",
|
||||||
|
"inputs": {
|
||||||
|
"filename_prefix": "ComfyUI",
|
||||||
|
"images": [
|
||||||
|
"8",
|
||||||
|
0
|
||||||
|
]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
|
||||||
|
def queue_prompt(prompt):
|
||||||
|
p = {"prompt": prompt}
|
||||||
|
data = json.dumps(p).encode('utf-8')
|
||||||
|
req = request.Request("http://127.0.0.1:8188/prompt", data=data)
|
||||||
|
request.urlopen(req)
|
||||||
|
|
||||||
|
|
||||||
|
prompt = json.loads(prompt_text)
|
||||||
|
#set the text prompt for our positive CLIPTextEncode
|
||||||
|
prompt["6"]["inputs"]["text"] = "masterpiece best quality man"
|
||||||
|
|
||||||
|
#set the seed for our KSampler node
|
||||||
|
prompt["3"]["inputs"]["seed"] = 5
|
||||||
|
|
||||||
|
|
||||||
|
queue_prompt(prompt)
|
||||||
|
|
||||||
|
|
@ -406,10 +406,12 @@ function graphToPrompt() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
for (let y in n.widgets) {
|
for (let y in n.widgets) {
|
||||||
if (n.widgets[y].dynamic_prompt && n.widgets[y].dynamic_prompt === true) {
|
if (!Object.hasOwn(n.widgets[y], 'to_randomize')) { //don't include "Random seed after every gen" in prompt.
|
||||||
input_[n.widgets[y].name] = n.widgets[y].value.replace("\\{", "{").replace("\\}", "}");
|
if (n.widgets[y].dynamic_prompt && n.widgets[y].dynamic_prompt === true) {
|
||||||
} else {
|
input_[n.widgets[y].name] = n.widgets[y].value.replace("\\{", "{").replace("\\}", "}");
|
||||||
input_[n.widgets[y].name] = n.widgets[y].value;
|
} else {
|
||||||
|
input_[n.widgets[y].name] = n.widgets[y].value;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
for (let y in n.inputs) {
|
for (let y in n.inputs) {
|
||||||
|
Loading…
Reference in New Issue
Block a user