mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Merge branch 'ipex' of https://github.com/kwaa/ComfyUI-IPEX
This commit is contained in:
commit
28a7205739
@ -18,10 +18,17 @@ total_vram = 0
|
||||
total_vram_available_mb = -1
|
||||
|
||||
accelerate_enabled = False
|
||||
xpu_available = False
|
||||
|
||||
try:
|
||||
import torch
|
||||
total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
|
||||
try:
|
||||
import intel_extension_for_pytorch as ipex
|
||||
if torch.xpu.is_available():
|
||||
xpu_available = True
|
||||
total_vram = torch.xpu.get_device_properties(torch.xpu.current_device()).total_memory / (1024 * 1024)
|
||||
except:
|
||||
total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
|
||||
total_ram = psutil.virtual_memory().total / (1024 * 1024)
|
||||
if not args.normalvram and not args.cpu:
|
||||
if total_vram <= 4096:
|
||||
@ -122,6 +129,7 @@ def load_model_gpu(model):
|
||||
global current_loaded_model
|
||||
global vram_state
|
||||
global model_accelerated
|
||||
global xpu_available
|
||||
|
||||
if model is current_loaded_model:
|
||||
return
|
||||
@ -140,14 +148,17 @@ def load_model_gpu(model):
|
||||
pass
|
||||
elif vram_state == VRAMState.NORMAL_VRAM or vram_state == VRAMState.HIGH_VRAM:
|
||||
model_accelerated = False
|
||||
real_model.cuda()
|
||||
if xpu_available:
|
||||
real_model.to("xpu")
|
||||
else:
|
||||
real_model.cuda()
|
||||
else:
|
||||
if vram_state == VRAMState.NO_VRAM:
|
||||
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
|
||||
elif vram_state == VRAMState.LOW_VRAM:
|
||||
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(total_vram_available_mb), "cpu": "16GiB"})
|
||||
|
||||
accelerate.dispatch_model(real_model, device_map=device_map, main_device="cuda")
|
||||
accelerate.dispatch_model(real_model, device_map=device_map, main_device="xpu" if xpu_available else "cuda")
|
||||
model_accelerated = True
|
||||
return current_loaded_model
|
||||
|
||||
@ -173,8 +184,12 @@ def load_controlnet_gpu(models):
|
||||
|
||||
def load_if_low_vram(model):
|
||||
global vram_state
|
||||
global xpu_available
|
||||
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
|
||||
return model.cuda()
|
||||
if xpu_available:
|
||||
return model.to("xpu")
|
||||
else:
|
||||
return model.cuda()
|
||||
return model
|
||||
|
||||
def unload_if_low_vram(model):
|
||||
@ -184,12 +199,16 @@ def unload_if_low_vram(model):
|
||||
return model
|
||||
|
||||
def get_torch_device():
|
||||
global xpu_available
|
||||
if vram_state == VRAMState.MPS:
|
||||
return torch.device("mps")
|
||||
if vram_state == VRAMState.CPU:
|
||||
return torch.device("cpu")
|
||||
else:
|
||||
return torch.cuda.current_device()
|
||||
if xpu_available:
|
||||
return torch.device("xpu")
|
||||
else:
|
||||
return torch.cuda.current_device()
|
||||
|
||||
def get_autocast_device(dev):
|
||||
if hasattr(dev, 'type'):
|
||||
@ -219,6 +238,7 @@ def pytorch_attention_enabled():
|
||||
return ENABLE_PYTORCH_ATTENTION
|
||||
|
||||
def get_free_memory(dev=None, torch_free_too=False):
|
||||
global xpu_available
|
||||
if dev is None:
|
||||
dev = get_torch_device()
|
||||
|
||||
@ -226,12 +246,16 @@ def get_free_memory(dev=None, torch_free_too=False):
|
||||
mem_free_total = psutil.virtual_memory().available
|
||||
mem_free_torch = mem_free_total
|
||||
else:
|
||||
stats = torch.cuda.memory_stats(dev)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_cuda + mem_free_torch
|
||||
if xpu_available:
|
||||
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
|
||||
mem_free_torch = mem_free_total
|
||||
else:
|
||||
stats = torch.cuda.memory_stats(dev)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_cuda + mem_free_torch
|
||||
|
||||
if torch_free_too:
|
||||
return (mem_free_total, mem_free_torch)
|
||||
@ -256,7 +280,8 @@ def mps_mode():
|
||||
return vram_state == VRAMState.MPS
|
||||
|
||||
def should_use_fp16():
|
||||
if cpu_mode() or mps_mode():
|
||||
global xpu_available
|
||||
if cpu_mode() or mps_mode() or xpu_available:
|
||||
return False #TODO ?
|
||||
|
||||
if torch.cuda.is_bf16_supported():
|
||||
|
@ -4,7 +4,7 @@ torchsde
|
||||
einops
|
||||
open-clip-torch
|
||||
transformers>=4.25.1
|
||||
safetensors
|
||||
safetensors>=0.3.0
|
||||
pytorch_lightning
|
||||
aiohttp
|
||||
accelerate
|
||||
|
Loading…
Reference in New Issue
Block a user