mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
refactor/split various bits of code for sampling
This commit is contained in:
parent
989acd769a
commit
2a09e2aa27
62
comfy/sample.py
Normal file
62
comfy/sample.py
Normal file
@ -0,0 +1,62 @@
|
|||||||
|
import torch
|
||||||
|
import comfy.model_management
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_noise(latent, seed, disable_noise):
|
||||||
|
latent_image = latent["samples"]
|
||||||
|
if disable_noise:
|
||||||
|
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
||||||
|
else:
|
||||||
|
batch_index = 0
|
||||||
|
if "batch_index" in latent:
|
||||||
|
batch_index = latent["batch_index"]
|
||||||
|
|
||||||
|
generator = torch.manual_seed(seed)
|
||||||
|
for i in range(batch_index):
|
||||||
|
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
||||||
|
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
||||||
|
return noise
|
||||||
|
|
||||||
|
def create_mask(latent, noise):
|
||||||
|
noise_mask = None
|
||||||
|
device = comfy.model_management.get_torch_device()
|
||||||
|
if "noise_mask" in latent:
|
||||||
|
noise_mask = latent['noise_mask']
|
||||||
|
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
|
||||||
|
noise_mask = noise_mask.round()
|
||||||
|
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
|
||||||
|
noise_mask = torch.cat([noise_mask] * noise.shape[0])
|
||||||
|
noise_mask = noise_mask.to(device)
|
||||||
|
return noise_mask
|
||||||
|
|
||||||
|
def broadcast_cond(cond, noise):
|
||||||
|
device = comfy.model_management.get_torch_device()
|
||||||
|
copy = []
|
||||||
|
for p in cond:
|
||||||
|
t = p[0]
|
||||||
|
if t.shape[0] < noise.shape[0]:
|
||||||
|
t = torch.cat([t] * noise.shape[0])
|
||||||
|
t = t.to(device)
|
||||||
|
copy += [[t] + p[1:]]
|
||||||
|
return copy
|
||||||
|
|
||||||
|
def load_c_nets(positive, negative):
|
||||||
|
def get_models(cond):
|
||||||
|
models = []
|
||||||
|
for c in cond:
|
||||||
|
if 'control' in c[1]:
|
||||||
|
models += [c[1]['control']]
|
||||||
|
if 'gligen' in c[1]:
|
||||||
|
models += [c[1]['gligen'][1]]
|
||||||
|
return models
|
||||||
|
|
||||||
|
return get_models(positive) + get_models(negative)
|
||||||
|
|
||||||
|
def load_additional_models(positive, negative):
|
||||||
|
models = load_c_nets(positive, negative)
|
||||||
|
comfy.model_management.load_controlnet_gpu(models)
|
||||||
|
return models
|
||||||
|
|
||||||
|
def cleanup_additional_models(models):
|
||||||
|
for m in models:
|
||||||
|
m.cleanup()
|
@ -392,6 +392,38 @@ def encode_adm(noise_augmentor, conds, batch_size, device):
|
|||||||
|
|
||||||
return conds
|
return conds
|
||||||
|
|
||||||
|
def calculate_sigmas(model, steps, scheduler, sampler):
|
||||||
|
"""
|
||||||
|
Returns a tensor containing the sigmas corresponding to the given model, number of steps, scheduler type and sample technique
|
||||||
|
"""
|
||||||
|
if not (isinstance(model, CompVisVDenoiser) or isinstance(model, k_diffusion_external.CompVisDenoiser)):
|
||||||
|
model = CFGNoisePredictor(model)
|
||||||
|
if model.inner_model.parameterization == "v":
|
||||||
|
model = CompVisVDenoiser(model, quantize=True)
|
||||||
|
else:
|
||||||
|
model = k_diffusion_external.CompVisDenoiser(model, quantize=True)
|
||||||
|
|
||||||
|
sigmas = None
|
||||||
|
|
||||||
|
discard_penultimate_sigma = False
|
||||||
|
if sampler in ['dpm_2', 'dpm_2_ancestral']:
|
||||||
|
steps += 1
|
||||||
|
discard_penultimate_sigma = True
|
||||||
|
|
||||||
|
if scheduler == "karras":
|
||||||
|
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.sigma_min), sigma_max=float(model.sigma_max))
|
||||||
|
elif scheduler == "normal":
|
||||||
|
sigmas = model.get_sigmas(steps)
|
||||||
|
elif scheduler == "simple":
|
||||||
|
sigmas = simple_scheduler(model, steps)
|
||||||
|
elif scheduler == "ddim_uniform":
|
||||||
|
sigmas = ddim_scheduler(model, steps)
|
||||||
|
else:
|
||||||
|
print("error invalid scheduler", scheduler)
|
||||||
|
|
||||||
|
if discard_penultimate_sigma:
|
||||||
|
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
||||||
|
return sigmas
|
||||||
|
|
||||||
class KSampler:
|
class KSampler:
|
||||||
SCHEDULERS = ["karras", "normal", "simple", "ddim_uniform"]
|
SCHEDULERS = ["karras", "normal", "simple", "ddim_uniform"]
|
||||||
@ -421,40 +453,18 @@ class KSampler:
|
|||||||
self.denoise = denoise
|
self.denoise = denoise
|
||||||
self.model_options = model_options
|
self.model_options = model_options
|
||||||
|
|
||||||
def _calculate_sigmas(self, steps):
|
|
||||||
sigmas = None
|
|
||||||
|
|
||||||
discard_penultimate_sigma = False
|
|
||||||
if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
|
|
||||||
steps += 1
|
|
||||||
discard_penultimate_sigma = True
|
|
||||||
|
|
||||||
if self.scheduler == "karras":
|
|
||||||
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max, device=self.device)
|
|
||||||
elif self.scheduler == "normal":
|
|
||||||
sigmas = self.model_wrap.get_sigmas(steps).to(self.device)
|
|
||||||
elif self.scheduler == "simple":
|
|
||||||
sigmas = simple_scheduler(self.model_wrap, steps).to(self.device)
|
|
||||||
elif self.scheduler == "ddim_uniform":
|
|
||||||
sigmas = ddim_scheduler(self.model_wrap, steps).to(self.device)
|
|
||||||
else:
|
|
||||||
print("error invalid scheduler", self.scheduler)
|
|
||||||
|
|
||||||
if discard_penultimate_sigma:
|
|
||||||
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
|
||||||
return sigmas
|
|
||||||
|
|
||||||
def set_steps(self, steps, denoise=None):
|
def set_steps(self, steps, denoise=None):
|
||||||
self.steps = steps
|
self.steps = steps
|
||||||
if denoise is None or denoise > 0.9999:
|
if denoise is None or denoise > 0.9999:
|
||||||
self.sigmas = self._calculate_sigmas(steps)
|
self.sigmas = calculate_sigmas(self.model_wrap, steps, self.scheduler, self.sampler).to(self.device)
|
||||||
else:
|
else:
|
||||||
new_steps = int(steps/denoise)
|
new_steps = int(steps/denoise)
|
||||||
sigmas = self._calculate_sigmas(new_steps)
|
sigmas = calculate_sigmas(self.model_wrap, new_steps, self.scheduler, self.sampler).to(self.device)
|
||||||
self.sigmas = sigmas[-(steps + 1):]
|
self.sigmas = sigmas[-(steps + 1):]
|
||||||
|
|
||||||
|
|
||||||
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None):
|
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None):
|
||||||
|
if sigmas is None:
|
||||||
sigmas = self.sigmas
|
sigmas = self.sigmas
|
||||||
sigma_min = self.sigma_min
|
sigma_min = self.sigma_min
|
||||||
|
|
||||||
|
60
nodes.py
60
nodes.py
@ -16,6 +16,7 @@ sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "co
|
|||||||
|
|
||||||
import comfy.diffusers_convert
|
import comfy.diffusers_convert
|
||||||
import comfy.samplers
|
import comfy.samplers
|
||||||
|
import comfy.sample
|
||||||
import comfy.sd
|
import comfy.sd
|
||||||
import comfy.utils
|
import comfy.utils
|
||||||
|
|
||||||
@ -739,31 +740,12 @@ class SetLatentNoiseMask:
|
|||||||
s["noise_mask"] = mask
|
s["noise_mask"] = mask
|
||||||
return (s,)
|
return (s,)
|
||||||
|
|
||||||
|
|
||||||
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
||||||
latent_image = latent["samples"]
|
|
||||||
noise_mask = None
|
|
||||||
device = comfy.model_management.get_torch_device()
|
device = comfy.model_management.get_torch_device()
|
||||||
|
latent_image = latent["samples"]
|
||||||
|
|
||||||
if disable_noise:
|
noise = comfy.sample.prepare_noise(latent, seed, disable_noise)
|
||||||
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
noise_mask = comfy.sample.create_mask(latent, noise)
|
||||||
else:
|
|
||||||
batch_index = 0
|
|
||||||
if "batch_index" in latent:
|
|
||||||
batch_index = latent["batch_index"]
|
|
||||||
|
|
||||||
generator = torch.manual_seed(seed)
|
|
||||||
for i in range(batch_index):
|
|
||||||
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
|
||||||
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
|
||||||
|
|
||||||
if "noise_mask" in latent:
|
|
||||||
noise_mask = latent['noise_mask']
|
|
||||||
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
|
|
||||||
noise_mask = noise_mask.round()
|
|
||||||
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
|
|
||||||
noise_mask = torch.cat([noise_mask] * noise.shape[0])
|
|
||||||
noise_mask = noise_mask.to(device)
|
|
||||||
|
|
||||||
real_model = None
|
real_model = None
|
||||||
comfy.model_management.load_model_gpu(model)
|
comfy.model_management.load_model_gpu(model)
|
||||||
@ -772,34 +754,10 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
|
|||||||
noise = noise.to(device)
|
noise = noise.to(device)
|
||||||
latent_image = latent_image.to(device)
|
latent_image = latent_image.to(device)
|
||||||
|
|
||||||
positive_copy = []
|
positive_copy = comfy.sample.broadcast_cond(positive, noise)
|
||||||
negative_copy = []
|
negative_copy = comfy.sample.broadcast_cond(negative, noise)
|
||||||
|
|
||||||
control_nets = []
|
models = comfy.sample.load_additional_models(positive, negative)
|
||||||
def get_models(cond):
|
|
||||||
models = []
|
|
||||||
for c in cond:
|
|
||||||
if 'control' in c[1]:
|
|
||||||
models += [c[1]['control']]
|
|
||||||
if 'gligen' in c[1]:
|
|
||||||
models += [c[1]['gligen'][1]]
|
|
||||||
return models
|
|
||||||
|
|
||||||
for p in positive:
|
|
||||||
t = p[0]
|
|
||||||
if t.shape[0] < noise.shape[0]:
|
|
||||||
t = torch.cat([t] * noise.shape[0])
|
|
||||||
t = t.to(device)
|
|
||||||
positive_copy += [[t] + p[1:]]
|
|
||||||
for n in negative:
|
|
||||||
t = n[0]
|
|
||||||
if t.shape[0] < noise.shape[0]:
|
|
||||||
t = torch.cat([t] * noise.shape[0])
|
|
||||||
t = t.to(device)
|
|
||||||
negative_copy += [[t] + n[1:]]
|
|
||||||
|
|
||||||
models = get_models(positive) + get_models(negative)
|
|
||||||
comfy.model_management.load_controlnet_gpu(models)
|
|
||||||
|
|
||||||
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
|
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
|
||||||
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
||||||
@ -809,8 +767,8 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
|
|||||||
|
|
||||||
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
|
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
|
||||||
samples = samples.cpu()
|
samples = samples.cpu()
|
||||||
for m in models:
|
|
||||||
m.cleanup()
|
comfy.sample.cleanup_additional_models(models)
|
||||||
|
|
||||||
out = latent.copy()
|
out = latent.copy()
|
||||||
out["samples"] = samples
|
out["samples"] = samples
|
||||||
|
Loading…
Reference in New Issue
Block a user