mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
improve sharpen and blur nodes
This commit is contained in:
parent
b9daf4e30f
commit
36af98d755
@ -59,6 +59,12 @@ class Blend:
|
|||||||
def g(self, x):
|
def g(self, x):
|
||||||
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
|
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
|
||||||
|
|
||||||
|
def gaussian_kernel(kernel_size: int, sigma: float):
|
||||||
|
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij")
|
||||||
|
d = torch.sqrt(x * x + y * y)
|
||||||
|
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
|
||||||
|
return g / g.sum()
|
||||||
|
|
||||||
class Blur:
|
class Blur:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
pass
|
pass
|
||||||
@ -88,12 +94,6 @@ class Blur:
|
|||||||
|
|
||||||
CATEGORY = "image/postprocessing"
|
CATEGORY = "image/postprocessing"
|
||||||
|
|
||||||
def gaussian_kernel(self, kernel_size: int, sigma: float):
|
|
||||||
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij")
|
|
||||||
d = torch.sqrt(x * x + y * y)
|
|
||||||
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
|
|
||||||
return g / g.sum()
|
|
||||||
|
|
||||||
def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
|
def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
|
||||||
if blur_radius == 0:
|
if blur_radius == 0:
|
||||||
return (image,)
|
return (image,)
|
||||||
@ -101,10 +101,11 @@ class Blur:
|
|||||||
batch_size, height, width, channels = image.shape
|
batch_size, height, width, channels = image.shape
|
||||||
|
|
||||||
kernel_size = blur_radius * 2 + 1
|
kernel_size = blur_radius * 2 + 1
|
||||||
kernel = self.gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1)
|
kernel = gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1)
|
||||||
|
|
||||||
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
|
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
|
||||||
blurred = F.conv2d(image, kernel, padding=kernel_size // 2, groups=channels)
|
padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
|
||||||
|
blurred = F.conv2d(image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
|
||||||
blurred = blurred.permute(0, 2, 3, 1)
|
blurred = blurred.permute(0, 2, 3, 1)
|
||||||
|
|
||||||
return (blurred,)
|
return (blurred,)
|
||||||
@ -167,9 +168,15 @@ class Sharpen:
|
|||||||
"max": 31,
|
"max": 31,
|
||||||
"step": 1
|
"step": 1
|
||||||
}),
|
}),
|
||||||
"alpha": ("FLOAT", {
|
"sigma": ("FLOAT", {
|
||||||
"default": 1.0,
|
"default": 1.0,
|
||||||
"min": 0.1,
|
"min": 0.1,
|
||||||
|
"max": 10.0,
|
||||||
|
"step": 0.1
|
||||||
|
}),
|
||||||
|
"alpha": ("FLOAT", {
|
||||||
|
"default": 1.0,
|
||||||
|
"min": 0.0,
|
||||||
"max": 5.0,
|
"max": 5.0,
|
||||||
"step": 0.1
|
"step": 0.1
|
||||||
}),
|
}),
|
||||||
@ -181,21 +188,21 @@ class Sharpen:
|
|||||||
|
|
||||||
CATEGORY = "image/postprocessing"
|
CATEGORY = "image/postprocessing"
|
||||||
|
|
||||||
def sharpen(self, image: torch.Tensor, sharpen_radius: int, alpha: float):
|
def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float):
|
||||||
if sharpen_radius == 0:
|
if sharpen_radius == 0:
|
||||||
return (image,)
|
return (image,)
|
||||||
|
|
||||||
batch_size, height, width, channels = image.shape
|
batch_size, height, width, channels = image.shape
|
||||||
|
|
||||||
kernel_size = sharpen_radius * 2 + 1
|
kernel_size = sharpen_radius * 2 + 1
|
||||||
kernel = torch.ones((kernel_size, kernel_size), dtype=torch.float32) * -1
|
kernel = gaussian_kernel(kernel_size, sigma) * -(alpha*10)
|
||||||
center = kernel_size // 2
|
center = kernel_size // 2
|
||||||
kernel[center, center] = kernel_size**2
|
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
|
||||||
kernel *= alpha
|
|
||||||
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
|
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
|
||||||
|
|
||||||
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
|
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
|
||||||
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)
|
tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
|
||||||
|
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
|
||||||
sharpened = sharpened.permute(0, 2, 3, 1)
|
sharpened = sharpened.permute(0, 2, 3, 1)
|
||||||
|
|
||||||
result = torch.clamp(sharpened, 0, 1)
|
result = torch.clamp(sharpened, 0, 1)
|
||||||
|
Loading…
Reference in New Issue
Block a user