mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-04-12 02:14:19 +00:00
A few fixes for the hunyuan3d models.
This commit is contained in:
parent
32ca0805b7
commit
3872b43d4b
@ -419,10 +419,11 @@ class VAE:
|
||||
inner_size = sd["geo_decoder.output_proj.weight"].shape[1]
|
||||
downsample_ratio = sd["post_kl.weight"].shape[0] // inner_size
|
||||
mlp_expand = sd["geo_decoder.cross_attn_decoder.mlp.c_fc.weight"].shape[0] // inner_size
|
||||
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype)
|
||||
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype) # TODO
|
||||
self.memory_used_decode = lambda shape, dtype: (1024 * 1024 * 1024 * 2.0) * model_management.dtype_size(dtype) # TODO
|
||||
ddconfig = {"embed_dim": 64, "num_freqs": 8, "include_pi": False, "heads": 16, "width": 1024, "num_decoder_layers": 16, "qkv_bias": False, "qk_norm": True, "geo_decoder_mlp_expand_ratio": mlp_expand, "geo_decoder_downsample_ratio": downsample_ratio, "geo_decoder_ln_post": ln_post}
|
||||
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE(**ddconfig)
|
||||
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
else:
|
||||
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
|
||||
self.first_stage_model = None
|
||||
|
@ -971,6 +971,8 @@ class Hunyuan3Dv2(supported_models_base.BASE):
|
||||
"shift": 1.0,
|
||||
}
|
||||
|
||||
memory_usage_factor = 3.5
|
||||
|
||||
clip_vision_prefix = "conditioner.main_image_encoder.model."
|
||||
vae_key_prefix = ["vae."]
|
||||
|
||||
|
@ -190,8 +190,12 @@ def voxel_to_mesh(voxels, threshold=0.5, device=None):
|
||||
|
||||
vertex_count += 4 * num_faces
|
||||
|
||||
vertices = torch.cat(all_vertices, dim=0)
|
||||
faces = torch.cat(all_indices, dim=0)
|
||||
if len(all_vertices) > 0:
|
||||
vertices = torch.cat(all_vertices, dim=0)
|
||||
faces = torch.cat(all_indices, dim=0)
|
||||
else:
|
||||
vertices = torch.zeros((1, 3))
|
||||
faces = torch.zeros((1, 3))
|
||||
|
||||
v_min = 0
|
||||
v_max = max(voxels.shape)
|
||||
|
Loading…
Reference in New Issue
Block a user