mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Only calculate randn in some samplers when it's actually being used.
This commit is contained in:
parent
ee8f8ee07f
commit
3a150bad15
@ -131,9 +131,9 @@ def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
|||||||
s_in = x.new_ones([x.shape[0]])
|
s_in = x.new_ones([x.shape[0]])
|
||||||
for i in trange(len(sigmas) - 1, disable=disable):
|
for i in trange(len(sigmas) - 1, disable=disable):
|
||||||
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
||||||
eps = torch.randn_like(x) * s_noise
|
|
||||||
sigma_hat = sigmas[i] * (gamma + 1)
|
sigma_hat = sigmas[i] * (gamma + 1)
|
||||||
if gamma > 0:
|
if gamma > 0:
|
||||||
|
eps = torch.randn_like(x) * s_noise
|
||||||
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
||||||
denoised = model(x, sigma_hat * s_in, **extra_args)
|
denoised = model(x, sigma_hat * s_in, **extra_args)
|
||||||
d = to_d(x, sigma_hat, denoised)
|
d = to_d(x, sigma_hat, denoised)
|
||||||
@ -172,9 +172,9 @@ def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
|||||||
s_in = x.new_ones([x.shape[0]])
|
s_in = x.new_ones([x.shape[0]])
|
||||||
for i in trange(len(sigmas) - 1, disable=disable):
|
for i in trange(len(sigmas) - 1, disable=disable):
|
||||||
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
||||||
eps = torch.randn_like(x) * s_noise
|
|
||||||
sigma_hat = sigmas[i] * (gamma + 1)
|
sigma_hat = sigmas[i] * (gamma + 1)
|
||||||
if gamma > 0:
|
if gamma > 0:
|
||||||
|
eps = torch.randn_like(x) * s_noise
|
||||||
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
||||||
denoised = model(x, sigma_hat * s_in, **extra_args)
|
denoised = model(x, sigma_hat * s_in, **extra_args)
|
||||||
d = to_d(x, sigma_hat, denoised)
|
d = to_d(x, sigma_hat, denoised)
|
||||||
@ -201,9 +201,9 @@ def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
|||||||
s_in = x.new_ones([x.shape[0]])
|
s_in = x.new_ones([x.shape[0]])
|
||||||
for i in trange(len(sigmas) - 1, disable=disable):
|
for i in trange(len(sigmas) - 1, disable=disable):
|
||||||
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
||||||
eps = torch.randn_like(x) * s_noise
|
|
||||||
sigma_hat = sigmas[i] * (gamma + 1)
|
sigma_hat = sigmas[i] * (gamma + 1)
|
||||||
if gamma > 0:
|
if gamma > 0:
|
||||||
|
eps = torch.randn_like(x) * s_noise
|
||||||
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
||||||
denoised = model(x, sigma_hat * s_in, **extra_args)
|
denoised = model(x, sigma_hat * s_in, **extra_args)
|
||||||
d = to_d(x, sigma_hat, denoised)
|
d = to_d(x, sigma_hat, denoised)
|
||||||
|
Loading…
Reference in New Issue
Block a user