More flexible long clip support.

Add clip g long clip support.

Text encoder refactor.

Support llama models with different vocab sizes.
This commit is contained in:
comfyanonymous 2025-04-15 10:32:21 -04:00
parent 8a438115fb
commit 3e8155f7a3
17 changed files with 95 additions and 66 deletions

View File

@ -82,7 +82,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
LAYERS = [ LAYERS = [
"last", "last",
"pooled", "pooled",
"hidden" "hidden",
"all"
] ]
def __init__(self, device="cpu", max_length=77, def __init__(self, device="cpu", max_length=77,
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel, freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
@ -93,6 +94,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
if textmodel_json_config is None: if textmodel_json_config is None:
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json") textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
if "model_name" not in model_options:
model_options = {**model_options, "model_name": "clip_l"}
if isinstance(textmodel_json_config, dict): if isinstance(textmodel_json_config, dict):
config = textmodel_json_config config = textmodel_json_config
@ -100,6 +103,10 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
with open(textmodel_json_config) as f: with open(textmodel_json_config) as f:
config = json.load(f) config = json.load(f)
te_model_options = model_options.get("{}_model_config".format(model_options.get("model_name", "")), {})
for k, v in te_model_options.items():
config[k] = v
operations = model_options.get("custom_operations", None) operations = model_options.get("custom_operations", None)
scaled_fp8 = None scaled_fp8 = None
@ -147,7 +154,9 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
def set_clip_options(self, options): def set_clip_options(self, options):
layer_idx = options.get("layer", self.layer_idx) layer_idx = options.get("layer", self.layer_idx)
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled) self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
if layer_idx is None or abs(layer_idx) > self.num_layers: if self.layer == "all":
pass
elif layer_idx is None or abs(layer_idx) > self.num_layers:
self.layer = "last" self.layer = "last"
else: else:
self.layer = "hidden" self.layer = "hidden"
@ -244,7 +253,12 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
if self.enable_attention_masks: if self.enable_attention_masks:
attention_mask_model = attention_mask attention_mask_model = attention_mask
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32) if self.layer == "all":
intermediate_output = "all"
else:
intermediate_output = self.layer_idx
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
if self.layer == "last": if self.layer == "last":
z = outputs[0].float() z = outputs[0].float()
@ -447,7 +461,7 @@ class SDTokenizer:
if tokenizer_path is None: if tokenizer_path is None:
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args) self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
self.max_length = max_length self.max_length = tokenizer_data.get("{}_max_length".format(embedding_key), max_length)
self.min_length = min_length self.min_length = min_length
self.end_token = None self.end_token = None
@ -645,6 +659,7 @@ class SD1ClipModel(torch.nn.Module):
self.clip = "clip_{}".format(self.clip_name) self.clip = "clip_{}".format(self.clip_name)
clip_model = model_options.get("{}_class".format(self.clip), clip_model) clip_model = model_options.get("{}_class".format(self.clip), clip_model)
model_options = {**model_options, "model_name": self.clip}
setattr(self, self.clip, clip_model(device=device, dtype=dtype, model_options=model_options, **kwargs)) setattr(self, self.clip, clip_model(device=device, dtype=dtype, model_options=model_options, **kwargs))
self.dtypes = set() self.dtypes = set()

View File

@ -9,6 +9,7 @@ class SDXLClipG(sd1_clip.SDClipModel):
layer_idx=-2 layer_idx=-2
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json") textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
model_options = {**model_options, "model_name": "clip_g"}
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False, return_projected_pooled=True, model_options=model_options) special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False, return_projected_pooled=True, model_options=model_options)
@ -17,14 +18,13 @@ class SDXLClipG(sd1_clip.SDClipModel):
class SDXLClipGTokenizer(sd1_clip.SDTokenizer): class SDXLClipGTokenizer(sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}): def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g') super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g', tokenizer_data=tokenizer_data)
class SDXLTokenizer: class SDXLTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer) self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory) self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {} out = {}
@ -41,8 +41,7 @@ class SDXLTokenizer:
class SDXLClipModel(torch.nn.Module): class SDXLClipModel(torch.nn.Module):
def __init__(self, device="cpu", dtype=None, model_options={}): def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__() super().__init__()
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel) self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, model_options=model_options)
self.clip_l = clip_l_class(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, model_options=model_options)
self.clip_g = SDXLClipG(device=device, dtype=dtype, model_options=model_options) self.clip_g = SDXLClipG(device=device, dtype=dtype, model_options=model_options)
self.dtypes = set([dtype]) self.dtypes = set([dtype])
@ -75,7 +74,7 @@ class SDXLRefinerClipModel(sd1_clip.SD1ClipModel):
class StableCascadeClipGTokenizer(sd1_clip.SDTokenizer): class StableCascadeClipGTokenizer(sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}): def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g') super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g', tokenizer_data=tokenizer_data)
class StableCascadeTokenizer(sd1_clip.SD1Tokenizer): class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
@ -84,6 +83,7 @@ class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
class StableCascadeClipG(sd1_clip.SDClipModel): class StableCascadeClipG(sd1_clip.SDClipModel):
def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None, model_options={}): def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json") textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
model_options = {**model_options, "model_name": "clip_g"}
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True, return_projected_pooled=True, model_options=model_options) special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True, return_projected_pooled=True, model_options=model_options)

View File

@ -11,7 +11,7 @@ class PT5XlModel(sd1_clip.SDClipModel):
class PT5XlTokenizer(sd1_clip.SDTokenizer): class PT5XlTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_pile_tokenizer"), "tokenizer.model") tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_pile_tokenizer"), "tokenizer.model")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1) super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1, tokenizer_data=tokenizer_data)
class AuraT5Tokenizer(sd1_clip.SD1Tokenizer): class AuraT5Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):

View File

@ -22,7 +22,7 @@ class CosmosT5XXL(sd1_clip.SD1ClipModel):
class T5XXLTokenizer(sd1_clip.SDTokenizer): class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=1024, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512) super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=1024, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, tokenizer_data=tokenizer_data)
class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer): class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer):

View File

@ -9,14 +9,13 @@ import os
class T5XXLTokenizer(sd1_clip.SDTokenizer): class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256) super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
class FluxTokenizer: class FluxTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer) self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory) self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {} out = {}
@ -35,8 +34,7 @@ class FluxClipModel(torch.nn.Module):
def __init__(self, dtype_t5=None, device="cpu", dtype=None, model_options={}): def __init__(self, dtype_t5=None, device="cpu", dtype=None, model_options={}):
super().__init__() super().__init__()
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device) dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel) self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.t5xxl = comfy.text_encoders.sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options) self.t5xxl = comfy.text_encoders.sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
self.dtypes = set([dtype, dtype_t5]) self.dtypes = set([dtype, dtype_t5])

View File

@ -18,7 +18,7 @@ class MochiT5XXL(sd1_clip.SD1ClipModel):
class T5XXLTokenizer(sd1_clip.SDTokenizer): class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256) super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
class MochiT5Tokenizer(sd1_clip.SD1Tokenizer): class MochiT5Tokenizer(sd1_clip.SD1Tokenizer):

View File

@ -21,26 +21,31 @@ def llama_detect(state_dict, prefix=""):
class LLAMA3Tokenizer(sd1_clip.SDTokenizer): class LLAMA3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256): def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256, pad_token=128258):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "llama_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "llama_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=128258, min_length=min_length) super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=pad_token, min_length=min_length, tokenizer_data=tokenizer_data)
class LLAMAModel(sd1_clip.SDClipModel): class LLAMAModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}): def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}, special_tokens={"start": 128000, "pad": 128258}):
llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None) llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None)
if llama_scaled_fp8 is not None: if llama_scaled_fp8 is not None:
model_options = model_options.copy() model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8 model_options["scaled_fp8"] = llama_scaled_fp8
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 128000, "pad": 128258}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Llama2, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) textmodel_json_config = {}
vocab_size = model_options.get("vocab_size", None)
if vocab_size is not None:
textmodel_json_config["vocab_size"] = vocab_size
model_options = {**model_options, "model_name": "llama"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens=special_tokens, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Llama2, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class HunyuanVideoTokenizer: class HunyuanVideoTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer) self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.llama_template = """<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>""" # 95 tokens self.llama_template = """<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>""" # 95 tokens
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1) self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, image_embeds=None, image_interleave=1, **kwargs): def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, image_embeds=None, image_interleave=1, **kwargs):
out = {} out = {}
@ -72,8 +77,7 @@ class HunyuanVideoClipModel(torch.nn.Module):
def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}): def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}):
super().__init__() super().__init__()
dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device) dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device)
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel) self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.llama = LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options) self.llama = LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options)
self.dtypes = set([dtype, dtype_llama]) self.dtypes = set([dtype, dtype_llama])

View File

@ -9,24 +9,26 @@ import torch
class HyditBertModel(sd1_clip.SDClipModel): class HyditBertModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip.json") textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip.json")
model_options = {**model_options, "model_name": "hydit_clip"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 101, "end": 102, "pad": 0}, model_class=BertModel, enable_attention_masks=True, return_attention_masks=True, model_options=model_options) super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 101, "end": 102, "pad": 0}, model_class=BertModel, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
class HyditBertTokenizer(sd1_clip.SDTokenizer): class HyditBertTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer, pad_to_max_length=False, max_length=512, min_length=77) super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer, pad_to_max_length=False, max_length=512, min_length=77, tokenizer_data=tokenizer_data)
class MT5XLModel(sd1_clip.SDClipModel): class MT5XLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_config_xl.json") textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_config_xl.json")
model_options = {**model_options, "model_name": "mt5xl"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, return_attention_masks=True, model_options=model_options) super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
class MT5XLTokenizer(sd1_clip.SDTokenizer): class MT5XLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
#tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_tokenizer"), "spiece.model") #tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_tokenizer"), "spiece.model")
tokenizer = tokenizer_data.get("spiece_model", None) tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256) super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
def state_dict(self): def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()} return {"spiece_model": self.tokenizer.serialize_model()}
@ -35,7 +37,7 @@ class HyditTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
mt5_tokenizer_data = tokenizer_data.get("mt5xl.spiece_model", None) mt5_tokenizer_data = tokenizer_data.get("mt5xl.spiece_model", None)
self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory) self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory)
self.mt5xl = MT5XLTokenizer(tokenizer_data={"spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory) self.mt5xl = MT5XLTokenizer(tokenizer_data={**tokenizer_data, "spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {} out = {}

View File

@ -268,11 +268,17 @@ class Llama2_(nn.Module):
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True) optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
intermediate = None intermediate = None
all_intermediate = None
if intermediate_output is not None: if intermediate_output is not None:
if intermediate_output < 0: if intermediate_output == "all":
all_intermediate = []
intermediate_output = None
elif intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output intermediate_output = len(self.layers) + intermediate_output
for i, layer in enumerate(self.layers): for i, layer in enumerate(self.layers):
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
x = layer( x = layer(
x=x, x=x,
attention_mask=mask, attention_mask=mask,
@ -283,6 +289,12 @@ class Llama2_(nn.Module):
intermediate = x.clone() intermediate = x.clone()
x = self.norm(x) x = self.norm(x)
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
if all_intermediate is not None:
intermediate = torch.cat(all_intermediate, dim=1)
if intermediate is not None and final_layer_norm_intermediate: if intermediate is not None and final_layer_norm_intermediate:
intermediate = self.norm(intermediate) intermediate = self.norm(intermediate)

View File

@ -1,30 +1,29 @@
from comfy import sd1_clip from comfy import sd1_clip
import os import os
class LongClipTokenizer_(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(max_length=248, embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
class LongClipModel_(sd1_clip.SDClipModel):
def __init__(self, *args, **kwargs):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "long_clipl.json")
super().__init__(*args, textmodel_json_config=textmodel_json_config, **kwargs)
class LongClipTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, tokenizer=LongClipTokenizer_)
class LongClipModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
super().__init__(device=device, dtype=dtype, model_options=model_options, clip_model=LongClipModel_, **kwargs)
def model_options_long_clip(sd, tokenizer_data, model_options): def model_options_long_clip(sd, tokenizer_data, model_options):
w = sd.get("clip_l.text_model.embeddings.position_embedding.weight", None) w = sd.get("clip_l.text_model.embeddings.position_embedding.weight", None)
if w is None:
w = sd.get("clip_g.text_model.embeddings.position_embedding.weight", None)
else:
model_name = "clip_g"
if w is None: if w is None:
w = sd.get("text_model.embeddings.position_embedding.weight", None) w = sd.get("text_model.embeddings.position_embedding.weight", None)
if w is not None and w.shape[0] == 248: if w is not None:
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
model_name = "clip_g"
elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
model_name = "clip_l"
else:
model_name = "clip_l"
if w is not None:
tokenizer_data = tokenizer_data.copy() tokenizer_data = tokenizer_data.copy()
model_options = model_options.copy() model_options = model_options.copy()
tokenizer_data["clip_l_tokenizer_class"] = LongClipTokenizer_ model_config = model_options.get("model_config", {})
model_options["clip_l_class"] = LongClipModel_ model_config["max_position_embeddings"] = w.shape[0]
model_options["{}_model_config".format(model_name)] = model_config
tokenizer_data["{}_max_length".format(model_name)] = w.shape[0]
return tokenizer_data, model_options return tokenizer_data, model_options

View File

@ -6,7 +6,7 @@ import comfy.text_encoders.genmo
class T5XXLTokenizer(sd1_clip.SDTokenizer): class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128) #pad to 128? super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128, tokenizer_data=tokenizer_data) #pad to 128?
class LTXVT5Tokenizer(sd1_clip.SD1Tokenizer): class LTXVT5Tokenizer(sd1_clip.SD1Tokenizer):

View File

@ -6,7 +6,7 @@ import comfy.text_encoders.llama
class Gemma2BTokenizer(sd1_clip.SDTokenizer): class Gemma2BTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None) tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=2304, embedding_key='gemma2_2b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}) super().__init__(tokenizer, pad_with_end=False, embedding_size=2304, embedding_key='gemma2_2b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
def state_dict(self): def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()} return {"spiece_model": self.tokenizer.serialize_model()}

View File

@ -24,7 +24,7 @@ class PixArtT5XXL(sd1_clip.SD1ClipModel):
class T5XXLTokenizer(sd1_clip.SDTokenizer): class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1) # no padding super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data) # no padding
class PixArtTokenizer(sd1_clip.SD1Tokenizer): class PixArtTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):

View File

@ -11,7 +11,7 @@ class T5BaseModel(sd1_clip.SDClipModel):
class T5BaseTokenizer(sd1_clip.SDTokenizer): class T5BaseTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128) super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128, tokenizer_data=tokenizer_data)
class SAT5Tokenizer(sd1_clip.SD1Tokenizer): class SAT5Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):

View File

@ -12,7 +12,7 @@ class SD2ClipHModel(sd1_clip.SDClipModel):
class SD2ClipHTokenizer(sd1_clip.SDTokenizer): class SD2ClipHTokenizer(sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}): def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024) super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024, embedding_key='clip_h', tokenizer_data=tokenizer_data)
class SD2Tokenizer(sd1_clip.SD1Tokenizer): class SD2Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):

View File

@ -15,6 +15,7 @@ class T5XXLModel(sd1_clip.SDClipModel):
model_options = model_options.copy() model_options = model_options.copy()
model_options["scaled_fp8"] = t5xxl_scaled_fp8 model_options["scaled_fp8"] = t5xxl_scaled_fp8
model_options = {**model_options, "model_name": "t5xxl"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
@ -31,17 +32,16 @@ def t5_xxl_detect(state_dict, prefix=""):
return out return out
class T5XXLTokenizer(sd1_clip.SDTokenizer): class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=77):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77) super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=min_length, tokenizer_data=tokenizer_data)
class SD3Tokenizer: class SD3Tokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer) self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory) self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory) self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {} out = {}
@ -61,8 +61,7 @@ class SD3ClipModel(torch.nn.Module):
super().__init__() super().__init__()
self.dtypes = set() self.dtypes = set()
if clip_l: if clip_l:
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel) self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False, model_options=model_options)
self.clip_l = clip_l_class(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False, model_options=model_options)
self.dtypes.add(dtype) self.dtypes.add(dtype)
else: else:
self.clip_l = None self.clip_l = None

View File

@ -11,7 +11,7 @@ class UMT5XXlModel(sd1_clip.SDClipModel):
class UMT5XXlTokenizer(sd1_clip.SDTokenizer): class UMT5XXlTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}): def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None) tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=4096, embedding_key='umt5xxl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=0) super().__init__(tokenizer, pad_with_end=False, embedding_size=4096, embedding_key='umt5xxl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=0, tokenizer_data=tokenizer_data)
def state_dict(self): def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()} return {"spiece_model": self.tokenizer.serialize_model()}