From 4039616ca673f52d3efadcc6b36260807dc9ba06 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Wed, 22 Mar 2023 03:29:09 -0400 Subject: [PATCH] Less seams in tiled outputs at the cost of more processing. --- comfy/sd.py | 13 +++++++++++-- 1 file changed, 11 insertions(+), 2 deletions(-) diff --git a/comfy/sd.py b/comfy/sd.py index b8f82966..585419f7 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -393,10 +393,16 @@ class VAE: pixel_samples = pixel_samples.cpu().movedim(1,-1) return pixel_samples - def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 8): + def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16): model_management.unload_model() self.first_stage_model = self.first_stage_model.to(self.device) - output = utils.tiled_scale(samples, lambda a: torch.clamp((self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0) / 2.0, min=0.0, max=1.0), tile_x, tile_y, overlap, upscale_amount = 8) + decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0) + output = torch.clamp(( + (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8) + + utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8) + + utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8)) + / 3.0) / 2.0, min=0.0, max=1.0) + self.first_stage_model = self.first_stage_model.cpu() return output.movedim(1,-1) @@ -414,6 +420,9 @@ class VAE: self.first_stage_model = self.first_stage_model.to(self.device) pixel_samples = pixel_samples.movedim(-1,1).to(self.device) samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4) + samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4) + samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4) + samples /= 3.0 self.first_stage_model = self.first_stage_model.cpu() samples = samples.cpu() return samples