Better subnormal fp8 stochastic rounding. Thanks Ashen.

This commit is contained in:
comfyanonymous 2024-08-19 13:38:03 -04:00
parent 20ace7c853
commit 4506ddc86a

View File

@ -19,25 +19,29 @@ def manual_stochastic_round_to_float8(x, dtype):
)
# Combine mantissa calculation and rounding
mantissa = abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0
mantissa_scaled = mantissa * (2**MANTISSA_BITS)
# min_normal = 2.0 ** (-EXPONENT_BIAS + 1)
# zero_mask = (abs_x == 0)
# subnormal_mask = (exponent == 0) & (abs_x != 0)
normal_mask = ~(exponent == 0)
mantissa_scaled = torch.where(
normal_mask,
(abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS),
(abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)))
)
mantissa_floor = mantissa_scaled.floor()
mantissa = torch.where(
torch.rand_like(mantissa_scaled) < (mantissa_scaled - mantissa_floor),
(mantissa_floor + 1) / (2**MANTISSA_BITS),
mantissa_floor / (2**MANTISSA_BITS)
)
result = torch.where(
normal_mask,
sign * (2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + mantissa),
sign * (2.0 ** (-EXPONENT_BIAS + 1)) * mantissa
)
# Combine final result calculation
result = sign * (2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + mantissa)
# Handle zero case
zero_mask = (abs_x == 0)
result = torch.where(zero_mask, torch.zeros_like(result), result)
# Handle subnormal numbers
min_normal = 2.0 ** (-EXPONENT_BIAS + 1)
result = torch.where((abs_x < min_normal) & (~zero_mask), torch.round(x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS))) * (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)), result)
result = torch.where(abs_x == 0, 0, result)
return result.to(dtype=dtype)