mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Some fixes to generalize CUDA specific functionality to Intel or other GPUs.
This commit is contained in:
parent
62efc78a4b
commit
4a0c4ce4ef
@ -323,8 +323,7 @@ class CrossAttentionDoggettx(nn.Module):
|
||||
break
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
if first_op_done == False:
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
model_management.soft_empty_cache()
|
||||
if cleared_cache == False:
|
||||
cleared_cache = True
|
||||
print("out of memory error, emptying cache and trying again")
|
||||
|
@ -15,6 +15,7 @@ import torch.nn as nn
|
||||
import numpy as np
|
||||
from einops import repeat
|
||||
|
||||
from comfy import model_management
|
||||
from comfy.ldm.util import instantiate_from_config
|
||||
import comfy.ops
|
||||
|
||||
@ -139,13 +140,22 @@ class CheckpointFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def backward(ctx, *output_grads):
|
||||
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
||||
with torch.enable_grad(), \
|
||||
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
||||
# Fixes a bug where the first op in run_function modifies the
|
||||
# Tensor storage in place, which is not allowed for detach()'d
|
||||
# Tensors.
|
||||
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
||||
output_tensors = ctx.run_function(*shallow_copies)
|
||||
if model_management.is_nvidia():
|
||||
with torch.enable_grad(), \
|
||||
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
||||
# Fixes a bug where the first op in run_function modifies the
|
||||
# Tensor storage in place, which is not allowed for detach()'d
|
||||
# Tensors.
|
||||
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
||||
output_tensors = ctx.run_function(*shallow_copies)
|
||||
elif model_management.is_intel_xpu():
|
||||
with torch.enable_grad(), \
|
||||
torch.xpu.amp.autocast(**ctx.gpu_autocast_kwargs):
|
||||
# Fixes a bug where the first op in run_function modifies the
|
||||
# Tensor storage in place, which is not allowed for detach()'d
|
||||
# Tensors.
|
||||
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
||||
output_tensors = ctx.run_function(*shallow_copies)
|
||||
input_grads = torch.autograd.grad(
|
||||
output_tensors,
|
||||
ctx.input_tensors + ctx.input_params,
|
||||
|
@ -58,8 +58,15 @@ except:
|
||||
if args.cpu:
|
||||
cpu_state = CPUState.CPU
|
||||
|
||||
def get_torch_device():
|
||||
def is_intel_xpu():
|
||||
global cpu_state
|
||||
global xpu_available
|
||||
if cpu_state == CPUState.GPU:
|
||||
if xpu_available:
|
||||
return True
|
||||
return False
|
||||
|
||||
def get_torch_device():
|
||||
global directml_enabled
|
||||
global cpu_state
|
||||
if directml_enabled:
|
||||
@ -70,13 +77,12 @@ def get_torch_device():
|
||||
if cpu_state == CPUState.CPU:
|
||||
return torch.device("cpu")
|
||||
else:
|
||||
if xpu_available:
|
||||
if is_intel_xpu():
|
||||
return torch.device("xpu")
|
||||
else:
|
||||
return torch.device(torch.cuda.current_device())
|
||||
|
||||
def get_total_memory(dev=None, torch_total_too=False):
|
||||
global xpu_available
|
||||
global directml_enabled
|
||||
if dev is None:
|
||||
dev = get_torch_device()
|
||||
@ -88,7 +94,7 @@ def get_total_memory(dev=None, torch_total_too=False):
|
||||
if directml_enabled:
|
||||
mem_total = 1024 * 1024 * 1024 #TODO
|
||||
mem_total_torch = mem_total
|
||||
elif xpu_available:
|
||||
elif is_intel_xpu():
|
||||
stats = torch.xpu.memory_stats(dev)
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_total = torch.xpu.get_device_properties(dev).total_memory
|
||||
@ -146,11 +152,11 @@ def is_nvidia():
|
||||
if cpu_state == CPUState.GPU:
|
||||
if torch.version.cuda:
|
||||
return True
|
||||
return False
|
||||
|
||||
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
|
||||
VAE_DTYPE = torch.float32
|
||||
|
||||
|
||||
try:
|
||||
if is_nvidia():
|
||||
torch_version = torch.version.__version__
|
||||
@ -162,6 +168,9 @@ try:
|
||||
except:
|
||||
pass
|
||||
|
||||
if is_intel_xpu():
|
||||
VAE_DTYPE = torch.bfloat16
|
||||
|
||||
if args.fp16_vae:
|
||||
VAE_DTYPE = torch.float16
|
||||
elif args.bf16_vae:
|
||||
@ -220,7 +229,6 @@ if DISABLE_SMART_MEMORY:
|
||||
print("Disabling smart memory management")
|
||||
|
||||
def get_torch_device_name(device):
|
||||
global xpu_available
|
||||
if hasattr(device, 'type'):
|
||||
if device.type == "cuda":
|
||||
try:
|
||||
@ -230,7 +238,7 @@ def get_torch_device_name(device):
|
||||
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
|
||||
else:
|
||||
return "{}".format(device.type)
|
||||
elif xpu_available:
|
||||
elif is_intel_xpu():
|
||||
return "{} {}".format(device, torch.xpu.get_device_name(device))
|
||||
else:
|
||||
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
|
||||
@ -260,7 +268,6 @@ class LoadedModel:
|
||||
return self.model_memory()
|
||||
|
||||
def model_load(self, lowvram_model_memory=0):
|
||||
global xpu_available
|
||||
patch_model_to = None
|
||||
if lowvram_model_memory == 0:
|
||||
patch_model_to = self.device
|
||||
@ -281,7 +288,7 @@ class LoadedModel:
|
||||
accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
|
||||
self.model_accelerated = True
|
||||
|
||||
if xpu_available and not args.disable_ipex_optimize:
|
||||
if is_intel_xpu() and not args.disable_ipex_optimize:
|
||||
self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
|
||||
|
||||
return self.real_model
|
||||
@ -471,12 +478,11 @@ def get_autocast_device(dev):
|
||||
|
||||
|
||||
def xformers_enabled():
|
||||
global xpu_available
|
||||
global directml_enabled
|
||||
global cpu_state
|
||||
if cpu_state != CPUState.GPU:
|
||||
return False
|
||||
if xpu_available:
|
||||
if is_intel_xpu():
|
||||
return False
|
||||
if directml_enabled:
|
||||
return False
|
||||
@ -503,7 +509,6 @@ def pytorch_attention_flash_attention():
|
||||
return False
|
||||
|
||||
def get_free_memory(dev=None, torch_free_too=False):
|
||||
global xpu_available
|
||||
global directml_enabled
|
||||
if dev is None:
|
||||
dev = get_torch_device()
|
||||
@ -515,7 +520,7 @@ def get_free_memory(dev=None, torch_free_too=False):
|
||||
if directml_enabled:
|
||||
mem_free_total = 1024 * 1024 * 1024 #TODO
|
||||
mem_free_torch = mem_free_total
|
||||
elif xpu_available:
|
||||
elif is_intel_xpu():
|
||||
stats = torch.xpu.memory_stats(dev)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_allocated = stats['allocated_bytes.all.current']
|
||||
@ -577,7 +582,6 @@ def is_device_mps(device):
|
||||
return False
|
||||
|
||||
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
|
||||
global xpu_available
|
||||
global directml_enabled
|
||||
|
||||
if device is not None:
|
||||
@ -600,7 +604,7 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
|
||||
if cpu_mode() or mps_mode():
|
||||
return False #TODO ?
|
||||
|
||||
if xpu_available:
|
||||
if is_intel_xpu():
|
||||
return True
|
||||
|
||||
if torch.cuda.is_bf16_supported():
|
||||
@ -636,11 +640,10 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
|
||||
return True
|
||||
|
||||
def soft_empty_cache():
|
||||
global xpu_available
|
||||
global cpu_state
|
||||
if cpu_state == CPUState.MPS:
|
||||
torch.mps.empty_cache()
|
||||
elif xpu_available:
|
||||
elif is_intel_xpu():
|
||||
torch.xpu.empty_cache()
|
||||
elif torch.cuda.is_available():
|
||||
if is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
|
||||
|
Loading…
Reference in New Issue
Block a user