Fix regression with model merging.

This commit is contained in:
comfyanonymous 2024-03-20 13:53:45 -04:00
parent c18a203a8a
commit 4b9005e949

View File

@ -319,16 +319,14 @@ class LoadedModel:
def minimum_inference_memory(): def minimum_inference_memory():
return (1024 * 1024 * 1024) return (1024 * 1024 * 1024)
def unload_model_clones(loaded_model, unload_weights_only=True): def unload_model_clones(model, unload_weights_only=True, force_unload=True):
model = loaded_model.model
to_unload = [] to_unload = []
for i in range(len(current_loaded_models)): for i in range(len(current_loaded_models)):
if model.is_clone(current_loaded_models[i].model): if model.is_clone(current_loaded_models[i].model):
to_unload = [i] + to_unload to_unload = [i] + to_unload
if len(to_unload) == 0: if len(to_unload) == 0:
return return None
same_weights = 0 same_weights = 0
for i in to_unload: for i in to_unload:
@ -340,14 +338,15 @@ def unload_model_clones(loaded_model, unload_weights_only=True):
else: else:
unload_weight = True unload_weight = True
if unload_weights_only and unload_weight == False: if not force_unload:
return if unload_weights_only and unload_weight == False:
return None
for i in to_unload: for i in to_unload:
logging.debug("unload clone {} {}".format(i, unload_weight)) logging.debug("unload clone {} {}".format(i, unload_weight))
current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight) current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight)
loaded_model.weights_loaded = not unload_weight return unload_weight
def free_memory(memory_required, device, keep_loaded=[]): def free_memory(memory_required, device, keep_loaded=[]):
unloaded_model = False unloaded_model = False
@ -402,7 +401,7 @@ def load_models_gpu(models, memory_required=0):
total_memory_required = {} total_memory_required = {}
for loaded_model in models_to_load: for loaded_model in models_to_load:
unload_model_clones(loaded_model, unload_weights_only=True) #unload clones where the weights are different unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) #unload clones where the weights are different
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device) total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
for device in total_memory_required: for device in total_memory_required:
@ -410,7 +409,9 @@ def load_models_gpu(models, memory_required=0):
free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded) free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
for loaded_model in models_to_load: for loaded_model in models_to_load:
unload_model_clones(loaded_model, unload_weights_only=False) #unload the rest of the clones where the weights can stay loaded weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded
if weights_unloaded is not None:
loaded_model.weights_loaded = not weights_unloaded
for loaded_model in models_to_load: for loaded_model in models_to_load:
model = loaded_model.model model = loaded_model.model