mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Initialize the unet directly on the target device.
This commit is contained in:
parent
ad5866b02b
commit
4b957a0010
@ -52,9 +52,9 @@ def init_(tensor):
|
||||
|
||||
# feedforward
|
||||
class GEGLU(nn.Module):
|
||||
def __init__(self, dim_in, dim_out, dtype=None):
|
||||
def __init__(self, dim_in, dim_out, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.proj = comfy.ops.Linear(dim_in, dim_out * 2, dtype=dtype)
|
||||
self.proj = comfy.ops.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||
@ -62,19 +62,19 @@ class GEGLU(nn.Module):
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = default(dim_out, dim)
|
||||
project_in = nn.Sequential(
|
||||
comfy.ops.Linear(dim, inner_dim, dtype=dtype),
|
||||
comfy.ops.Linear(dim, inner_dim, dtype=dtype, device=device),
|
||||
nn.GELU()
|
||||
) if not glu else GEGLU(dim, inner_dim, dtype=dtype)
|
||||
) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
project_in,
|
||||
nn.Dropout(dropout),
|
||||
comfy.ops.Linear(inner_dim, dim_out, dtype=dtype)
|
||||
comfy.ops.Linear(inner_dim, dim_out, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
@ -90,8 +90,8 @@ def zero_module(module):
|
||||
return module
|
||||
|
||||
|
||||
def Normalize(in_channels, dtype=None):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype)
|
||||
def Normalize(in_channels, dtype=None, device=None):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
|
||||
|
||||
|
||||
class SpatialSelfAttention(nn.Module):
|
||||
@ -148,7 +148,7 @@ class SpatialSelfAttention(nn.Module):
|
||||
|
||||
|
||||
class CrossAttentionBirchSan(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
@ -156,12 +156,12 @@ class CrossAttentionBirchSan(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
self.heads = heads
|
||||
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype),
|
||||
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
@ -245,7 +245,7 @@ class CrossAttentionBirchSan(nn.Module):
|
||||
|
||||
|
||||
class CrossAttentionDoggettx(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
@ -253,12 +253,12 @@ class CrossAttentionDoggettx(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
self.heads = heads
|
||||
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype),
|
||||
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
@ -343,7 +343,7 @@ class CrossAttentionDoggettx(nn.Module):
|
||||
return self.to_out(r2)
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
@ -351,12 +351,12 @@ class CrossAttention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
self.heads = heads
|
||||
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype),
|
||||
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
@ -399,7 +399,7 @@ class CrossAttention(nn.Module):
|
||||
|
||||
class MemoryEfficientCrossAttention(nn.Module):
|
||||
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None, device=None):
|
||||
super().__init__()
|
||||
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
||||
f"{heads} heads.")
|
||||
@ -409,11 +409,11 @@ class MemoryEfficientCrossAttention(nn.Module):
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim, dtype=dtype), nn.Dropout(dropout))
|
||||
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
|
||||
self.attention_op: Optional[Any] = None
|
||||
|
||||
def forward(self, x, context=None, value=None, mask=None):
|
||||
@ -450,7 +450,7 @@ class MemoryEfficientCrossAttention(nn.Module):
|
||||
return self.to_out(out)
|
||||
|
||||
class CrossAttentionPytorch(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
@ -458,11 +458,11 @@ class CrossAttentionPytorch(nn.Module):
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype)
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim, dtype=dtype), nn.Dropout(dropout))
|
||||
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
|
||||
self.attention_op: Optional[Any] = None
|
||||
|
||||
def forward(self, x, context=None, value=None, mask=None):
|
||||
@ -508,17 +508,17 @@ else:
|
||||
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
||||
disable_self_attn=False, dtype=None):
|
||||
disable_self_attn=False, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.disable_self_attn = disable_self_attn
|
||||
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
||||
context_dim=context_dim if self.disable_self_attn else None, dtype=dtype) # is a self-attention if not self.disable_self_attn
|
||||
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype)
|
||||
context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device) # is a self-attention if not self.disable_self_attn
|
||||
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device)
|
||||
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
||||
heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype) # is self-attn if context is none
|
||||
self.norm1 = nn.LayerNorm(dim, dtype=dtype)
|
||||
self.norm2 = nn.LayerNorm(dim, dtype=dtype)
|
||||
self.norm3 = nn.LayerNorm(dim, dtype=dtype)
|
||||
heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device) # is self-attn if context is none
|
||||
self.norm1 = nn.LayerNorm(dim, dtype=dtype, device=device)
|
||||
self.norm2 = nn.LayerNorm(dim, dtype=dtype, device=device)
|
||||
self.norm3 = nn.LayerNorm(dim, dtype=dtype, device=device)
|
||||
self.checkpoint = checkpoint
|
||||
self.n_heads = n_heads
|
||||
self.d_head = d_head
|
||||
@ -648,34 +648,34 @@ class SpatialTransformer(nn.Module):
|
||||
def __init__(self, in_channels, n_heads, d_head,
|
||||
depth=1, dropout=0., context_dim=None,
|
||||
disable_self_attn=False, use_linear=False,
|
||||
use_checkpoint=True, dtype=None):
|
||||
use_checkpoint=True, dtype=None, device=None):
|
||||
super().__init__()
|
||||
if exists(context_dim) and not isinstance(context_dim, list):
|
||||
context_dim = [context_dim] * depth
|
||||
self.in_channels = in_channels
|
||||
inner_dim = n_heads * d_head
|
||||
self.norm = Normalize(in_channels, dtype=dtype)
|
||||
self.norm = Normalize(in_channels, dtype=dtype, device=device)
|
||||
if not use_linear:
|
||||
self.proj_in = nn.Conv2d(in_channels,
|
||||
inner_dim,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0, dtype=dtype)
|
||||
padding=0, dtype=dtype, device=device)
|
||||
else:
|
||||
self.proj_in = comfy.ops.Linear(in_channels, inner_dim, dtype=dtype)
|
||||
self.proj_in = comfy.ops.Linear(in_channels, inner_dim, dtype=dtype, device=device)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
||||
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype)
|
||||
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device)
|
||||
for d in range(depth)]
|
||||
)
|
||||
if not use_linear:
|
||||
self.proj_out = nn.Conv2d(inner_dim,in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0, dtype=dtype)
|
||||
padding=0, dtype=dtype, device=device)
|
||||
else:
|
||||
self.proj_out = comfy.ops.Linear(in_channels, inner_dim, dtype=dtype)
|
||||
self.proj_out = comfy.ops.Linear(in_channels, inner_dim, dtype=dtype, device=device)
|
||||
self.use_linear = use_linear
|
||||
|
||||
def forward(self, x, context=None, transformer_options={}):
|
||||
|
@ -111,14 +111,14 @@ class Upsample(nn.Module):
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None):
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if use_conv:
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype)
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x, output_shape=None):
|
||||
assert x.shape[1] == self.channels
|
||||
@ -160,7 +160,7 @@ class Downsample(nn.Module):
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None):
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
@ -169,7 +169,7 @@ class Downsample(nn.Module):
|
||||
stride = 2 if dims != 3 else (1, 2, 2)
|
||||
if use_conv:
|
||||
self.op = conv_nd(
|
||||
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype
|
||||
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
|
||||
)
|
||||
else:
|
||||
assert self.channels == self.out_channels
|
||||
@ -208,7 +208,8 @@ class ResBlock(TimestepBlock):
|
||||
use_checkpoint=False,
|
||||
up=False,
|
||||
down=False,
|
||||
dtype=None
|
||||
dtype=None,
|
||||
device=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
@ -220,19 +221,19 @@ class ResBlock(TimestepBlock):
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
nn.GroupNorm(32, channels, dtype=dtype),
|
||||
nn.GroupNorm(32, channels, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype),
|
||||
conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.updown = up or down
|
||||
|
||||
if up:
|
||||
self.h_upd = Upsample(channels, False, dims, dtype=dtype)
|
||||
self.x_upd = Upsample(channels, False, dims, dtype=dtype)
|
||||
self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
|
||||
self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
|
||||
elif down:
|
||||
self.h_upd = Downsample(channels, False, dims, dtype=dtype)
|
||||
self.x_upd = Downsample(channels, False, dims, dtype=dtype)
|
||||
self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
|
||||
self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
|
||||
else:
|
||||
self.h_upd = self.x_upd = nn.Identity()
|
||||
|
||||
@ -240,15 +241,15 @@ class ResBlock(TimestepBlock):
|
||||
nn.SiLU(),
|
||||
linear(
|
||||
emb_channels,
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
|
||||
),
|
||||
)
|
||||
self.out_layers = nn.Sequential(
|
||||
nn.GroupNorm(32, self.out_channels, dtype=dtype),
|
||||
nn.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(
|
||||
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1, dtype=dtype)
|
||||
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1, dtype=dtype, device=device)
|
||||
),
|
||||
)
|
||||
|
||||
@ -256,10 +257,10 @@ class ResBlock(TimestepBlock):
|
||||
self.skip_connection = nn.Identity()
|
||||
elif use_conv:
|
||||
self.skip_connection = conv_nd(
|
||||
dims, channels, self.out_channels, 3, padding=1, dtype=dtype
|
||||
dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device
|
||||
)
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1, dtype=dtype)
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
@ -503,6 +504,7 @@ class UNetModel(nn.Module):
|
||||
use_linear_in_transformer=False,
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
device=None,
|
||||
):
|
||||
super().__init__()
|
||||
if use_spatial_transformer:
|
||||
@ -564,9 +566,9 @@ class UNetModel(nn.Module):
|
||||
|
||||
time_embed_dim = model_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, time_embed_dim, dtype=self.dtype),
|
||||
linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim, dtype=self.dtype),
|
||||
linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
||||
)
|
||||
|
||||
if self.num_classes is not None:
|
||||
@ -579,9 +581,9 @@ class UNetModel(nn.Module):
|
||||
assert adm_in_channels is not None
|
||||
self.label_emb = nn.Sequential(
|
||||
nn.Sequential(
|
||||
linear(adm_in_channels, time_embed_dim, dtype=self.dtype),
|
||||
linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim, dtype=self.dtype),
|
||||
linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
||||
)
|
||||
)
|
||||
else:
|
||||
@ -590,7 +592,7 @@ class UNetModel(nn.Module):
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype)
|
||||
conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
||||
)
|
||||
]
|
||||
)
|
||||
@ -609,7 +611,8 @@ class UNetModel(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
@ -638,7 +641,7 @@ class UNetModel(nn.Module):
|
||||
) if not use_spatial_transformer else SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
@ -657,11 +660,12 @@ class UNetModel(nn.Module):
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=True,
|
||||
dtype=self.dtype
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device
|
||||
)
|
||||
)
|
||||
)
|
||||
@ -686,7 +690,8 @@ class UNetModel(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
),
|
||||
AttentionBlock(
|
||||
ch,
|
||||
@ -697,7 +702,7 @@ class UNetModel(nn.Module):
|
||||
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
@ -706,7 +711,8 @@ class UNetModel(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
),
|
||||
)
|
||||
self._feature_size += ch
|
||||
@ -724,7 +730,8 @@ class UNetModel(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
)
|
||||
]
|
||||
ch = model_channels * mult
|
||||
@ -753,7 +760,7 @@ class UNetModel(nn.Module):
|
||||
) if not use_spatial_transformer else SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device
|
||||
)
|
||||
)
|
||||
if level and i == self.num_res_blocks[level]:
|
||||
@ -768,24 +775,25 @@ class UNetModel(nn.Module):
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
up=True,
|
||||
dtype=self.dtype
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
)
|
||||
if resblock_updown
|
||||
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype)
|
||||
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device)
|
||||
)
|
||||
ds //= 2
|
||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
|
||||
self.out = nn.Sequential(
|
||||
nn.GroupNorm(32, ch, dtype=self.dtype),
|
||||
nn.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype)),
|
||||
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
|
||||
)
|
||||
if self.predict_codebook_ids:
|
||||
self.id_predictor = nn.Sequential(
|
||||
nn.GroupNorm(32, ch, dtype=self.dtype),
|
||||
conv_nd(dims, model_channels, n_embed, 1),
|
||||
nn.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
||||
conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
|
||||
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
||||
)
|
||||
|
||||
|
@ -12,14 +12,14 @@ class ModelType(Enum):
|
||||
V_PREDICTION = 2
|
||||
|
||||
class BaseModel(torch.nn.Module):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||
super().__init__()
|
||||
|
||||
unet_config = model_config.unet_config
|
||||
self.latent_format = model_config.latent_format
|
||||
self.model_config = model_config
|
||||
self.register_schedule(given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
|
||||
self.diffusion_model = UNetModel(**unet_config)
|
||||
self.diffusion_model = UNetModel(**unet_config, device=device)
|
||||
self.model_type = model_type
|
||||
self.adm_channels = unet_config.get("adm_in_channels", None)
|
||||
if self.adm_channels is None:
|
||||
@ -107,8 +107,8 @@ class BaseModel(torch.nn.Module):
|
||||
|
||||
|
||||
class SD21UNCLIP(BaseModel):
|
||||
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION):
|
||||
super().__init__(model_config, model_type)
|
||||
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
@ -143,13 +143,13 @@ class SD21UNCLIP(BaseModel):
|
||||
return adm_out
|
||||
|
||||
class SDInpaint(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS):
|
||||
super().__init__(model_config, model_type)
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.concat_keys = ("mask", "masked_image")
|
||||
|
||||
class SDXLRefiner(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS):
|
||||
super().__init__(model_config, model_type)
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.embedder = Timestep(256)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
@ -174,8 +174,8 @@ class SDXLRefiner(BaseModel):
|
||||
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
||||
|
||||
class SDXL(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS):
|
||||
super().__init__(model_config, model_type)
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.embedder = Timestep(256)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
|
@ -1169,8 +1169,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
|
||||
|
||||
offload_device = model_management.unet_offload_device()
|
||||
model = model_config.get_model(sd, "model.diffusion_model.")
|
||||
model = model.to(offload_device)
|
||||
model = model_config.get_model(sd, "model.diffusion_model.", device=offload_device)
|
||||
model.load_model_weights(sd, "model.diffusion_model.")
|
||||
|
||||
if output_vae:
|
||||
|
@ -109,8 +109,8 @@ class SDXLRefiner(supported_models_base.BASE):
|
||||
|
||||
latent_format = latent_formats.SDXL
|
||||
|
||||
def get_model(self, state_dict, prefix=""):
|
||||
return model_base.SDXLRefiner(self)
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
return model_base.SDXLRefiner(self, device=device)
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
keys_to_replace = {}
|
||||
@ -152,8 +152,8 @@ class SDXL(supported_models_base.BASE):
|
||||
else:
|
||||
return model_base.ModelType.EPS
|
||||
|
||||
def get_model(self, state_dict, prefix=""):
|
||||
return model_base.SDXL(self, model_type=self.model_type(state_dict, prefix))
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
return model_base.SDXL(self, model_type=self.model_type(state_dict, prefix), device=device)
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
keys_to_replace = {}
|
||||
|
@ -53,13 +53,13 @@ class BASE:
|
||||
for x in self.unet_extra_config:
|
||||
self.unet_config[x] = self.unet_extra_config[x]
|
||||
|
||||
def get_model(self, state_dict, prefix=""):
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
if self.inpaint_model():
|
||||
return model_base.SDInpaint(self, model_type=self.model_type(state_dict, prefix))
|
||||
return model_base.SDInpaint(self, model_type=self.model_type(state_dict, prefix), device=device)
|
||||
elif self.noise_aug_config is not None:
|
||||
return model_base.SD21UNCLIP(self, self.noise_aug_config, model_type=self.model_type(state_dict, prefix))
|
||||
return model_base.SD21UNCLIP(self, self.noise_aug_config, model_type=self.model_type(state_dict, prefix), device=device)
|
||||
else:
|
||||
return model_base.BaseModel(self, model_type=self.model_type(state_dict, prefix))
|
||||
return model_base.BaseModel(self, model_type=self.model_type(state_dict, prefix), device=device)
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
return state_dict
|
||||
|
Loading…
Reference in New Issue
Block a user