mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Add a T2IAdapterLoader node to load T2I-Adapter models.
They are loaded as CONTROL_NET objects because they are similar.
This commit is contained in:
parent
fcb25d37db
commit
4e6b83a80a
92
comfy/sd.py
92
comfy/sd.py
@ -8,6 +8,7 @@ from ldm.util import instantiate_from_config
|
||||
from ldm.models.autoencoder import AutoencoderKL
|
||||
from omegaconf import OmegaConf
|
||||
from .cldm import cldm
|
||||
from .t2i_adapter import adapter
|
||||
|
||||
from . import utils
|
||||
|
||||
@ -388,7 +389,7 @@ class ControlNet:
|
||||
self.control_model = model_management.load_if_low_vram(self.control_model)
|
||||
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
|
||||
self.control_model = model_management.unload_if_low_vram(self.control_model)
|
||||
out = {'input':[], 'middle':[], 'output': []}
|
||||
out = {'middle':[], 'output': []}
|
||||
autocast_enabled = torch.is_autocast_enabled()
|
||||
|
||||
for i in range(len(control)):
|
||||
@ -504,6 +505,95 @@ def load_controlnet(ckpt_path, model=None):
|
||||
control = ControlNet(control_model)
|
||||
return control
|
||||
|
||||
class T2IAdapter:
|
||||
def __init__(self, t2i_model, channels_in, device="cuda"):
|
||||
self.t2i_model = t2i_model
|
||||
self.channels_in = channels_in
|
||||
self.strength = 1.0
|
||||
self.device = device
|
||||
self.previous_controlnet = None
|
||||
self.control_input = None
|
||||
self.cond_hint_original = None
|
||||
self.cond_hint = None
|
||||
|
||||
def get_control(self, x_noisy, t, cond_txt):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt)
|
||||
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
|
||||
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
||||
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
||||
self.t2i_model.to(self.device)
|
||||
self.control_input = self.t2i_model(self.cond_hint)
|
||||
self.t2i_model.cpu()
|
||||
|
||||
output_dtype = x_noisy.dtype
|
||||
out = {'input':[]}
|
||||
|
||||
for i in range(len(self.control_input)):
|
||||
key = 'input'
|
||||
x = self.control_input[i] * self.strength
|
||||
if x.dtype != output_dtype and not autocast_enabled:
|
||||
x = x.to(output_dtype)
|
||||
|
||||
if control_prev is not None and key in control_prev:
|
||||
index = len(control_prev[key]) - i * 3 - 3
|
||||
prev = control_prev[key][index]
|
||||
if prev is not None:
|
||||
x += prev
|
||||
out[key].insert(0, None)
|
||||
out[key].insert(0, None)
|
||||
out[key].insert(0, x)
|
||||
|
||||
if control_prev is not None and 'input' in control_prev:
|
||||
for i in range(len(out['input'])):
|
||||
if out['input'][i] is None:
|
||||
out['input'][i] = control_prev['input'][i]
|
||||
if control_prev is not None and 'middle' in control_prev:
|
||||
out['middle'] = control_prev['middle']
|
||||
if control_prev is not None and 'output' in control_prev:
|
||||
out['output'] = control_prev['output']
|
||||
return out
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0):
|
||||
self.cond_hint_original = cond_hint
|
||||
self.strength = strength
|
||||
return self
|
||||
|
||||
def set_previous_controlnet(self, controlnet):
|
||||
self.previous_controlnet = controlnet
|
||||
return self
|
||||
|
||||
def copy(self):
|
||||
c = T2IAdapter(self.t2i_model, self.channels_in)
|
||||
c.cond_hint_original = self.cond_hint_original
|
||||
c.strength = self.strength
|
||||
return c
|
||||
|
||||
def cleanup(self):
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.cleanup()
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
|
||||
def get_control_models(self):
|
||||
out = []
|
||||
if self.previous_controlnet is not None:
|
||||
out += self.previous_controlnet.get_control_models()
|
||||
return out
|
||||
|
||||
def load_t2i_adapter(ckpt_path, model=None):
|
||||
t2i_data = load_torch_file(ckpt_path)
|
||||
cin = t2i_data['conv_in.weight'].shape[1]
|
||||
model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
|
||||
model_ad.load_state_dict(t2i_data)
|
||||
return T2IAdapter(model_ad, cin // 64)
|
||||
|
||||
def load_clip(ckpt_path, embedding_directory=None):
|
||||
clip_data = load_torch_file(ckpt_path)
|
||||
|
125
comfy/t2i_adapter/adapter.py
Normal file
125
comfy/t2i_adapter/adapter.py
Normal file
@ -0,0 +1,125 @@
|
||||
#taken from https://github.com/TencentARC/T2I-Adapter
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ldm.modules.attention import SpatialTransformer, BasicTransformerBlock
|
||||
|
||||
def conv_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D convolution module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.Conv1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.Conv2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.Conv3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
def avg_pool_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D average pooling module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.AvgPool1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.AvgPool2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.AvgPool3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
class Downsample(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
stride = 2 if dims != 3 else (1, 2, 2)
|
||||
if use_conv:
|
||||
self.op = conv_nd(
|
||||
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
||||
)
|
||||
else:
|
||||
assert self.channels == self.out_channels
|
||||
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
|
||||
super().__init__()
|
||||
ps = ksize//2
|
||||
if in_c != out_c or sk==False:
|
||||
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
|
||||
else:
|
||||
# print('n_in')
|
||||
self.in_conv = None
|
||||
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
|
||||
self.act = nn.ReLU()
|
||||
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
|
||||
if sk==False:
|
||||
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
|
||||
else:
|
||||
self.skep = None
|
||||
|
||||
self.down = down
|
||||
if self.down == True:
|
||||
self.down_opt = Downsample(in_c, use_conv=use_conv)
|
||||
|
||||
def forward(self, x):
|
||||
if self.down == True:
|
||||
x = self.down_opt(x)
|
||||
if self.in_conv is not None: # edit
|
||||
x = self.in_conv(x)
|
||||
|
||||
h = self.block1(x)
|
||||
h = self.act(h)
|
||||
h = self.block2(h)
|
||||
if self.skep is not None:
|
||||
return h + self.skep(x)
|
||||
else:
|
||||
return h + x
|
||||
|
||||
|
||||
class Adapter(nn.Module):
|
||||
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True):
|
||||
super(Adapter, self).__init__()
|
||||
self.unshuffle = nn.PixelUnshuffle(8)
|
||||
self.channels = channels
|
||||
self.nums_rb = nums_rb
|
||||
self.body = []
|
||||
for i in range(len(channels)):
|
||||
for j in range(nums_rb):
|
||||
if (i!=0) and (j==0):
|
||||
self.body.append(ResnetBlock(channels[i-1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
|
||||
else:
|
||||
self.body.append(ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
|
||||
self.body = nn.ModuleList(self.body)
|
||||
self.conv_in = nn.Conv2d(cin,channels[0], 3, 1, 1)
|
||||
|
||||
def forward(self, x):
|
||||
# unshuffle
|
||||
x = self.unshuffle(x)
|
||||
# extract features
|
||||
features = []
|
||||
x = self.conv_in(x)
|
||||
for i in range(len(self.channels)):
|
||||
for j in range(self.nums_rb):
|
||||
idx = i*self.nums_rb +j
|
||||
x = self.body[idx](x)
|
||||
features.append(x)
|
||||
|
||||
return features
|
0
models/t2i_adapter/put_t2i_adapter_models_here
Normal file
0
models/t2i_adapter/put_t2i_adapter_models_here
Normal file
17
nodes.py
17
nodes.py
@ -292,6 +292,22 @@ class ControlNetApply:
|
||||
c.append(n)
|
||||
return (c, )
|
||||
|
||||
class T2IAdapterLoader:
|
||||
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
|
||||
t2i_adapter_dir = os.path.join(models_dir, "t2i_adapter")
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "t2i_adapter_name": (filter_files_extensions(recursive_search(s.t2i_adapter_dir), supported_pt_extensions), )}}
|
||||
|
||||
RETURN_TYPES = ("CONTROL_NET",)
|
||||
FUNCTION = "load_t2i_adapter"
|
||||
|
||||
CATEGORY = "loaders"
|
||||
|
||||
def load_t2i_adapter(self, t2i_adapter_name):
|
||||
t2i_path = os.path.join(self.t2i_adapter_dir, t2i_adapter_name)
|
||||
t2i_adapter = comfy.sd.load_t2i_adapter(t2i_path)
|
||||
return (t2i_adapter,)
|
||||
|
||||
class CLIPLoader:
|
||||
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
|
||||
@ -804,6 +820,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"ControlNetApply": ControlNetApply,
|
||||
"ControlNetLoader": ControlNetLoader,
|
||||
"DiffControlNetLoader": DiffControlNetLoader,
|
||||
"T2IAdapterLoader": T2IAdapterLoader,
|
||||
"VAEDecodeTiled": VAEDecodeTiled,
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user