mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Gpu variant of dpmpp_3m_sde. Note: use 3m with exponential or karras.
This commit is contained in:
parent
ba319a34e4
commit
58c7da3665
@ -631,25 +631,13 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
|||||||
elif solver_type == 'midpoint':
|
elif solver_type == 'midpoint':
|
||||||
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
|
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
|
||||||
|
|
||||||
|
if eta:
|
||||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
|
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
|
||||||
|
|
||||||
old_denoised = denoised
|
old_denoised = denoised
|
||||||
h_last = h
|
h_last = h
|
||||||
return x
|
return x
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
|
||||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
|
||||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
|
||||||
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
|
||||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
|
||||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
|
||||||
return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def sample_dpmpp_3m(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
def sample_dpmpp_3m(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||||
"""DPM-Solver++(3M) without SDE-specific parts."""
|
"""DPM-Solver++(3M) without SDE-specific parts."""
|
||||||
@ -680,8 +668,9 @@ def sample_dpmpp_3m(model, x, sigmas, extra_args=None, callback=None, disable=No
|
|||||||
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||||
"""DPM-Solver++(3M) SDE."""
|
"""DPM-Solver++(3M) SDE."""
|
||||||
|
|
||||||
|
seed = extra_args.get("seed", None)
|
||||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
|
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
||||||
extra_args = {} if extra_args is None else extra_args
|
extra_args = {} if extra_args is None else extra_args
|
||||||
s_in = x.new_ones([x.shape[0]])
|
s_in = x.new_ones([x.shape[0]])
|
||||||
|
|
||||||
@ -725,3 +714,21 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
|||||||
h_1, h_2 = h, h_1
|
h_1, h_2 = h, h_1
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||||
|
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||||
|
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||||
|
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
||||||
|
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||||
|
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||||
|
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
||||||
|
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||||
|
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||||
|
return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
|
||||||
|
|
||||||
|
@ -528,7 +528,7 @@ class KSampler:
|
|||||||
SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
|
SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
|
||||||
SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
|
SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
|
||||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||||
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m","dpmpp_3m_sde", "ddim", "uni_pc", "uni_pc_bh2"]
|
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]
|
||||||
|
|
||||||
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
|
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
|
||||||
self.model = model
|
self.model = model
|
||||||
|
Loading…
Reference in New Issue
Block a user