diff --git a/comfy/controlnet.py b/comfy/controlnet.py index 356d5c0e..1352d141 100644 --- a/comfy/controlnet.py +++ b/comfy/controlnet.py @@ -527,6 +527,10 @@ def load_t2i_adapter(t2i_data): model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.0.weight'].shape[1], proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63]) compression_ratio = 32 upscale_algorithm = 'bilinear' + elif "backbone.10.blocks.0.weight" in keys: + model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.weight'].shape[1], bottleneck_mode="large", proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63]) + compression_ratio = 1 + upscale_algorithm = 'nearest-exact' else: return None diff --git a/comfy/ldm/cascade/controlnet.py b/comfy/ldm/cascade/controlnet.py index c5757308..5dac5939 100644 --- a/comfy/ldm/cascade/controlnet.py +++ b/comfy/ldm/cascade/controlnet.py @@ -67,7 +67,7 @@ class ControlNet(nn.Module): operations.Conv2d(c_in, 4096 * 4, kernel_size=1, dtype=dtype, device=device), nn.LeakyReLU(0.2, inplace=True), operations.Conv2d(4096 * 4, 1024, kernel_size=1, dtype=dtype, device=device), - *[CNetResBlock(1024) for _ in range(8)], + *[CNetResBlock(1024, dtype=dtype, device=device, operations=operations) for _ in range(8)], operations.Conv2d(1024, 1280, kernel_size=1, dtype=dtype, device=device), ) embd_channels = 1280