mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-02-28 14:40:27 +00:00
WIP support for Wan t2v model.
This commit is contained in:
parent
f40076096e
commit
63023011b9
@ -407,3 +407,31 @@ class Cosmos1CV8x8x8(LatentFormat):
|
||||
]
|
||||
|
||||
latent_rgb_factors_bias = [-0.1223, -0.1889, -0.1976]
|
||||
|
||||
class Wan21(LatentFormat):
|
||||
latent_channels = 16
|
||||
latent_dimensions = 3
|
||||
|
||||
def __init__(self):
|
||||
self.scale_factor = 1.0
|
||||
self.latents_mean = torch.tensor([
|
||||
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
|
||||
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
|
||||
]).view(1, self.latent_channels, 1, 1, 1)
|
||||
self.latents_std = torch.tensor([
|
||||
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
|
||||
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
|
||||
]).view(1, self.latent_channels, 1, 1, 1)
|
||||
|
||||
|
||||
self.taesd_decoder_name = None #TODO
|
||||
|
||||
def process_in(self, latent):
|
||||
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
||||
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
||||
return (latent - latents_mean) * self.scale_factor / latents_std
|
||||
|
||||
def process_out(self, latent):
|
||||
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
||||
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
||||
return latent * latents_std / self.scale_factor + latents_mean
|
||||
|
567
comfy/ldm/wan/model.py
Normal file
567
comfy/ldm/wan/model.py
Normal file
@ -0,0 +1,567 @@
|
||||
# original version: https://github.com/Wan-Video/Wan2.1/blob/main/wan/modules/model.py
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
|
||||
|
||||
def sinusoidal_embedding_1d(dim, position):
|
||||
# preprocess
|
||||
assert dim % 2 == 0
|
||||
half = dim // 2
|
||||
position = position.type(torch.float64)
|
||||
|
||||
# calculation
|
||||
sinusoid = torch.outer(
|
||||
position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
|
||||
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
|
||||
return x
|
||||
|
||||
|
||||
def rope_params(max_seq_len, dim, theta=10000):
|
||||
assert dim % 2 == 0
|
||||
freqs = torch.outer(
|
||||
torch.arange(max_seq_len),
|
||||
1.0 / torch.pow(theta,
|
||||
torch.arange(0, dim, 2).to(torch.float64).div(dim)))
|
||||
freqs = torch.polar(torch.ones_like(freqs), freqs)
|
||||
return freqs
|
||||
|
||||
|
||||
def rope_apply(x, grid_sizes, freqs):
|
||||
n, c = x.size(2), x.size(3) // 2
|
||||
|
||||
# split freqs
|
||||
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
|
||||
|
||||
# loop over samples
|
||||
output = []
|
||||
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
||||
seq_len = f * h * w
|
||||
|
||||
# precompute multipliers
|
||||
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(
|
||||
seq_len, n, -1, 2))
|
||||
freqs_i = torch.cat([
|
||||
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
||||
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
||||
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
||||
], dim=-1).reshape(seq_len, 1, -1)
|
||||
|
||||
# apply rotary embedding
|
||||
x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
|
||||
x_i = torch.cat([x_i, x[i, seq_len:]])
|
||||
|
||||
# append to collection
|
||||
output.append(x_i)
|
||||
return torch.stack(output).to(dtype=x.dtype)
|
||||
|
||||
|
||||
class WanRMSNorm(nn.Module):
|
||||
|
||||
def __init__(self, dim, eps=1e-5, device=None, dtype=None):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.eps = eps
|
||||
self.weight = nn.Parameter(torch.ones(dim, device=device, dtype=dtype))
|
||||
|
||||
def forward(self, x):
|
||||
r"""
|
||||
Args:
|
||||
x(Tensor): Shape [B, L, C]
|
||||
"""
|
||||
return self._norm(x.float()).type_as(x) * self.weight
|
||||
|
||||
def _norm(self, x):
|
||||
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
|
||||
|
||||
|
||||
class WanSelfAttention(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
dim,
|
||||
num_heads,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
eps=1e-6, operation_settings={}):
|
||||
assert dim % num_heads == 0
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = dim // num_heads
|
||||
self.window_size = window_size
|
||||
self.qk_norm = qk_norm
|
||||
self.eps = eps
|
||||
|
||||
# layers
|
||||
self.q = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.norm_q = WanRMSNorm(dim, eps=eps, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
||||
self.norm_k = WanRMSNorm(dim, eps=eps, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
||||
|
||||
def forward(self, x, seq_lens, grid_sizes, freqs):
|
||||
r"""
|
||||
Args:
|
||||
x(Tensor): Shape [B, L, num_heads, C / num_heads]
|
||||
seq_lens(Tensor): Shape [B]
|
||||
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
||||
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
||||
"""
|
||||
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
||||
|
||||
# query, key, value function
|
||||
def qkv_fn(x):
|
||||
q = self.norm_q(self.q(x)).view(b, s, n, d)
|
||||
k = self.norm_k(self.k(x)).view(b, s, n, d)
|
||||
v = self.v(x).view(b, s, n * d)
|
||||
return q, k, v
|
||||
|
||||
q, k, v = qkv_fn(x)
|
||||
|
||||
x = optimized_attention(
|
||||
q=rope_apply(q, grid_sizes, freqs).view(b, s, n * d),
|
||||
k=rope_apply(k, grid_sizes, freqs).view(b, s, n * d),
|
||||
v=v,
|
||||
heads=self.num_heads,
|
||||
)
|
||||
|
||||
x = self.o(x)
|
||||
return x
|
||||
|
||||
|
||||
class WanT2VCrossAttention(WanSelfAttention):
|
||||
|
||||
def forward(self, x, context, context_lens):
|
||||
r"""
|
||||
Args:
|
||||
x(Tensor): Shape [B, L1, C]
|
||||
context(Tensor): Shape [B, L2, C]
|
||||
context_lens(Tensor): Shape [B]
|
||||
"""
|
||||
# compute query, key, value
|
||||
q = self.norm_q(self.q(x))
|
||||
k = self.norm_k(self.k(context))
|
||||
v = self.v(context)
|
||||
|
||||
# compute attention
|
||||
x = optimized_attention(q, k, v, heads=self.num_heads)
|
||||
|
||||
x = self.o(x)
|
||||
return x
|
||||
|
||||
|
||||
class WanI2VCrossAttention(WanSelfAttention):
|
||||
|
||||
def __init__(self,
|
||||
dim,
|
||||
num_heads,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
eps=1e-6, operation_settings={}):
|
||||
super().__init__(dim, num_heads, window_size, qk_norm, eps)
|
||||
|
||||
self.k_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.v_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
# self.alpha = nn.Parameter(torch.zeros((1, )))
|
||||
self.norm_k_img = WanRMSNorm(dim, eps=eps, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
||||
|
||||
def forward(self, x, context, context_lens):
|
||||
r"""
|
||||
Args:
|
||||
x(Tensor): Shape [B, L1, C]
|
||||
context(Tensor): Shape [B, L2, C]
|
||||
context_lens(Tensor): Shape [B]
|
||||
"""
|
||||
context_img = context[:, :257]
|
||||
context = context[:, 257:]
|
||||
|
||||
# compute query, key, value
|
||||
q = self.norm_q(self.q(x))
|
||||
k = self.norm_k(self.k(context))
|
||||
v = self.v(context)
|
||||
k_img = self.norm_k_img(self.k_img(context_img))
|
||||
v_img = self.v_img(context_img)
|
||||
img_x = optimized_attention(q, k_img, v_img, heads=self.num_heads)
|
||||
# compute attention
|
||||
x = optimized_attention(q, k, v, heads=self.num_heads)
|
||||
|
||||
# output
|
||||
x = x + img_x
|
||||
x = self.o(x)
|
||||
return x
|
||||
|
||||
|
||||
WAN_CROSSATTENTION_CLASSES = {
|
||||
't2v_cross_attn': WanT2VCrossAttention,
|
||||
'i2v_cross_attn': WanI2VCrossAttention,
|
||||
}
|
||||
|
||||
|
||||
class WanAttentionBlock(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
cross_attn_type,
|
||||
dim,
|
||||
ffn_dim,
|
||||
num_heads,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=False,
|
||||
eps=1e-6, operation_settings={}):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.ffn_dim = ffn_dim
|
||||
self.num_heads = num_heads
|
||||
self.window_size = window_size
|
||||
self.qk_norm = qk_norm
|
||||
self.cross_attn_norm = cross_attn_norm
|
||||
self.eps = eps
|
||||
|
||||
# layers
|
||||
self.norm1 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
|
||||
eps, operation_settings=operation_settings)
|
||||
self.norm3 = operation_settings.get("operations").LayerNorm(
|
||||
dim, eps,
|
||||
elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if cross_attn_norm else nn.Identity()
|
||||
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
|
||||
num_heads,
|
||||
(-1, -1),
|
||||
qk_norm,
|
||||
eps, operation_settings=operation_settings)
|
||||
self.norm2 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.ffn = nn.Sequential(
|
||||
operation_settings.get("operations").Linear(dim, ffn_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'),
|
||||
operation_settings.get("operations").Linear(ffn_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
||||
|
||||
# modulation
|
||||
self.modulation = nn.Parameter(torch.empty(1, 6, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
e,
|
||||
seq_lens,
|
||||
grid_sizes,
|
||||
freqs,
|
||||
context,
|
||||
context_lens,
|
||||
):
|
||||
r"""
|
||||
Args:
|
||||
x(Tensor): Shape [B, L, C]
|
||||
e(Tensor): Shape [B, 6, C]
|
||||
seq_lens(Tensor): Shape [B], length of each sequence in batch
|
||||
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
||||
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
||||
"""
|
||||
# assert e.dtype == torch.float32
|
||||
|
||||
e = (self.modulation + e).chunk(6, dim=1)
|
||||
# assert e[0].dtype == torch.float32
|
||||
|
||||
# self-attention
|
||||
y = self.self_attn(
|
||||
self.norm1(x) * (1 + e[1]) + e[0], seq_lens, grid_sizes,
|
||||
freqs)
|
||||
|
||||
x = x + y * e[2]
|
||||
|
||||
# cross-attention & ffn function
|
||||
def cross_attn_ffn(x, context, context_lens, e):
|
||||
x = x + self.cross_attn(self.norm3(x), context, context_lens)
|
||||
y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3])
|
||||
x = x + y * e[5]
|
||||
return x
|
||||
|
||||
x = cross_attn_ffn(x, context, context_lens, e)
|
||||
return x
|
||||
|
||||
|
||||
class Head(nn.Module):
|
||||
|
||||
def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.out_dim = out_dim
|
||||
self.patch_size = patch_size
|
||||
self.eps = eps
|
||||
|
||||
# layers
|
||||
out_dim = math.prod(patch_size) * out_dim
|
||||
self.norm = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.head = operation_settings.get("operations").Linear(dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
# modulation
|
||||
self.modulation = nn.Parameter(torch.empty(1, 2, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
||||
|
||||
def forward(self, x, e):
|
||||
r"""
|
||||
Args:
|
||||
x(Tensor): Shape [B, L1, C]
|
||||
e(Tensor): Shape [B, C]
|
||||
"""
|
||||
# assert e.dtype == torch.float32
|
||||
e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
|
||||
x = (self.head(self.norm(x) * (1 + e[1]) + e[0]))
|
||||
return x
|
||||
|
||||
|
||||
class MLPProj(torch.nn.Module):
|
||||
|
||||
def __init__(self, in_dim, out_dim, operation_settings={}):
|
||||
super().__init__()
|
||||
|
||||
self.proj = torch.nn.Sequential(
|
||||
operation_settings.get("operations").LayerNorm(in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), operation_settings.get("operations").Linear(in_dim, in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
|
||||
torch.nn.GELU(), operation_settings.get("operations").Linear(in_dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
|
||||
operation_settings.get("operations").LayerNorm(out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
||||
|
||||
def forward(self, image_embeds):
|
||||
clip_extra_context_tokens = self.proj(image_embeds)
|
||||
return clip_extra_context_tokens
|
||||
|
||||
|
||||
class WanModel(torch.nn.Module):
|
||||
r"""
|
||||
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model_type='t2v',
|
||||
patch_size=(1, 2, 2),
|
||||
text_len=512,
|
||||
in_dim=16,
|
||||
dim=2048,
|
||||
ffn_dim=8192,
|
||||
freq_dim=256,
|
||||
text_dim=4096,
|
||||
out_dim=16,
|
||||
num_heads=16,
|
||||
num_layers=32,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=True,
|
||||
eps=1e-6,
|
||||
image_model=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
operations=None,
|
||||
):
|
||||
r"""
|
||||
Initialize the diffusion model backbone.
|
||||
|
||||
Args:
|
||||
model_type (`str`, *optional*, defaults to 't2v'):
|
||||
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
|
||||
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
|
||||
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
|
||||
text_len (`int`, *optional*, defaults to 512):
|
||||
Fixed length for text embeddings
|
||||
in_dim (`int`, *optional*, defaults to 16):
|
||||
Input video channels (C_in)
|
||||
dim (`int`, *optional*, defaults to 2048):
|
||||
Hidden dimension of the transformer
|
||||
ffn_dim (`int`, *optional*, defaults to 8192):
|
||||
Intermediate dimension in feed-forward network
|
||||
freq_dim (`int`, *optional*, defaults to 256):
|
||||
Dimension for sinusoidal time embeddings
|
||||
text_dim (`int`, *optional*, defaults to 4096):
|
||||
Input dimension for text embeddings
|
||||
out_dim (`int`, *optional*, defaults to 16):
|
||||
Output video channels (C_out)
|
||||
num_heads (`int`, *optional*, defaults to 16):
|
||||
Number of attention heads
|
||||
num_layers (`int`, *optional*, defaults to 32):
|
||||
Number of transformer blocks
|
||||
window_size (`tuple`, *optional*, defaults to (-1, -1)):
|
||||
Window size for local attention (-1 indicates global attention)
|
||||
qk_norm (`bool`, *optional*, defaults to True):
|
||||
Enable query/key normalization
|
||||
cross_attn_norm (`bool`, *optional*, defaults to False):
|
||||
Enable cross-attention normalization
|
||||
eps (`float`, *optional*, defaults to 1e-6):
|
||||
Epsilon value for normalization layers
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
|
||||
|
||||
assert model_type in ['t2v', 'i2v']
|
||||
self.model_type = model_type
|
||||
|
||||
self.patch_size = patch_size
|
||||
self.text_len = text_len
|
||||
self.in_dim = in_dim
|
||||
self.dim = dim
|
||||
self.ffn_dim = ffn_dim
|
||||
self.freq_dim = freq_dim
|
||||
self.text_dim = text_dim
|
||||
self.out_dim = out_dim
|
||||
self.num_heads = num_heads
|
||||
self.num_layers = num_layers
|
||||
self.window_size = window_size
|
||||
self.qk_norm = qk_norm
|
||||
self.cross_attn_norm = cross_attn_norm
|
||||
self.eps = eps
|
||||
|
||||
# embeddings
|
||||
self.patch_embedding = operations.Conv3d(
|
||||
in_dim, dim, kernel_size=patch_size, stride=patch_size, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.text_embedding = nn.Sequential(
|
||||
operations.Linear(text_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'),
|
||||
operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
||||
|
||||
self.time_embedding = nn.Sequential(
|
||||
operations.Linear(freq_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.SiLU(), operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
||||
self.time_projection = nn.Sequential(nn.SiLU(), operations.Linear(dim, dim * 6, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
||||
|
||||
# blocks
|
||||
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
|
||||
self.blocks = nn.ModuleList([
|
||||
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
|
||||
window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
|
||||
for _ in range(num_layers)
|
||||
])
|
||||
|
||||
# head
|
||||
self.head = Head(dim, out_dim, patch_size, eps, operation_settings=operation_settings)
|
||||
|
||||
# buffers (don't use register_buffer otherwise dtype will be changed in to())
|
||||
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
|
||||
d = dim // num_heads
|
||||
self.register_buffer("freqs", torch.cat([
|
||||
rope_params(1024, d - 4 * (d // 6)),
|
||||
rope_params(1024, 2 * (d // 6)),
|
||||
rope_params(1024, 2 * (d // 6))
|
||||
], dim=1), persistent=False)
|
||||
|
||||
if model_type == 'i2v':
|
||||
self.img_emb = MLPProj(1280, dim, operation_settings=operation_settings)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
x,
|
||||
t,
|
||||
context,
|
||||
seq_len=None,
|
||||
clip_fea=None,
|
||||
y=None,
|
||||
):
|
||||
r"""
|
||||
Forward pass through the diffusion model
|
||||
|
||||
Args:
|
||||
x (List[Tensor]):
|
||||
List of input video tensors, each with shape [C_in, F, H, W]
|
||||
t (Tensor):
|
||||
Diffusion timesteps tensor of shape [B]
|
||||
context (List[Tensor]):
|
||||
List of text embeddings each with shape [L, C]
|
||||
seq_len (`int`):
|
||||
Maximum sequence length for positional encoding
|
||||
clip_fea (Tensor, *optional*):
|
||||
CLIP image features for image-to-video mode
|
||||
y (List[Tensor], *optional*):
|
||||
Conditional video inputs for image-to-video mode, same shape as x
|
||||
|
||||
Returns:
|
||||
List[Tensor]:
|
||||
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
||||
"""
|
||||
if self.model_type == 'i2v':
|
||||
assert clip_fea is not None and y is not None
|
||||
# params
|
||||
# device = self.patch_embedding.weight.device
|
||||
# if self.freqs.device != device:
|
||||
# self.freqs = self.freqs.to(device)
|
||||
|
||||
if y is not None:
|
||||
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
||||
|
||||
# embeddings
|
||||
x = [self.patch_embedding(u) for u in x]
|
||||
grid_sizes = torch.stack(
|
||||
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
||||
x = [u.flatten(2).transpose(1, 2) for u in x]
|
||||
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
||||
if seq_len is not None:
|
||||
assert seq_lens.max() <= seq_len
|
||||
x = torch.cat([
|
||||
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
|
||||
dim=1) for u in x
|
||||
])
|
||||
elif len(x) == 1:
|
||||
x = x[0]
|
||||
|
||||
# time embeddings
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
|
||||
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
||||
|
||||
# context
|
||||
context_lens = None
|
||||
context = self.text_embedding(
|
||||
torch.cat([
|
||||
torch.cat(
|
||||
[u, u.new_zeros(u.size(0), self.text_len - u.size(1), u.size(2))], dim=1)
|
||||
for u in context
|
||||
], dim=0))
|
||||
|
||||
if clip_fea is not None:
|
||||
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||||
context = torch.concat([context_clip, context], dim=1)
|
||||
|
||||
# arguments
|
||||
kwargs = dict(
|
||||
e=e0,
|
||||
seq_lens=seq_lens,
|
||||
grid_sizes=grid_sizes,
|
||||
freqs=self.freqs,
|
||||
context=context,
|
||||
context_lens=context_lens)
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x, **kwargs)
|
||||
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return x
|
||||
# return [u.float() for u in x]
|
||||
|
||||
def forward(self, x, t, context, y=None, image=None, **kwargs):
|
||||
return self.forward_orig([x], t, [context], clip_fea=y, y=image)[0]
|
||||
|
||||
def unpatchify(self, x, grid_sizes):
|
||||
r"""
|
||||
Reconstruct video tensors from patch embeddings.
|
||||
|
||||
Args:
|
||||
x (List[Tensor]):
|
||||
List of patchified features, each with shape [L, C_out * prod(patch_size)]
|
||||
grid_sizes (Tensor):
|
||||
Original spatial-temporal grid dimensions before patching,
|
||||
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
|
||||
|
||||
Returns:
|
||||
List[Tensor]:
|
||||
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
|
||||
"""
|
||||
|
||||
c = self.out_dim
|
||||
out = []
|
||||
for u, v in zip(x, grid_sizes.tolist()):
|
||||
u = u[:math.prod(v)].view(*v, *self.patch_size, c)
|
||||
u = torch.einsum('fhwpqrc->cfphqwr', u)
|
||||
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
|
||||
out.append(u)
|
||||
return out
|
567
comfy/ldm/wan/vae.py
Normal file
567
comfy/ldm/wan/vae.py
Normal file
@ -0,0 +1,567 @@
|
||||
# original version: https://github.com/Wan-Video/Wan2.1/blob/main/wan/modules/vae.py
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from comfy.ldm.modules.diffusionmodules.model import vae_attention
|
||||
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
CACHE_T = 2
|
||||
|
||||
|
||||
class CausalConv3d(ops.Conv3d):
|
||||
"""
|
||||
Causal 3d convolusion.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self._padding = (self.padding[2], self.padding[2], self.padding[1],
|
||||
self.padding[1], 2 * self.padding[0], 0)
|
||||
self.padding = (0, 0, 0)
|
||||
|
||||
def forward(self, x, cache_x=None):
|
||||
padding = list(self._padding)
|
||||
if cache_x is not None and self._padding[4] > 0:
|
||||
cache_x = cache_x.to(x.device)
|
||||
x = torch.cat([cache_x, x], dim=2)
|
||||
padding[4] -= cache_x.shape[2]
|
||||
x = F.pad(x, padding)
|
||||
|
||||
return super().forward(x)
|
||||
|
||||
|
||||
class RMS_norm(nn.Module):
|
||||
|
||||
def __init__(self, dim, channel_first=True, images=True, bias=False):
|
||||
super().__init__()
|
||||
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
|
||||
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
|
||||
|
||||
self.channel_first = channel_first
|
||||
self.scale = dim**0.5
|
||||
self.gamma = nn.Parameter(torch.ones(shape))
|
||||
self.bias = nn.Parameter(torch.zeros(shape)) if bias else None
|
||||
|
||||
def forward(self, x):
|
||||
return F.normalize(
|
||||
x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma.to(x) + (self.bias.to(x) if self.bias is not None else 0)
|
||||
|
||||
|
||||
class Upsample(nn.Upsample):
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Fix bfloat16 support for nearest neighbor interpolation.
|
||||
"""
|
||||
return super().forward(x.float()).type_as(x)
|
||||
|
||||
|
||||
class Resample(nn.Module):
|
||||
|
||||
def __init__(self, dim, mode):
|
||||
assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d',
|
||||
'downsample3d')
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.mode = mode
|
||||
|
||||
# layers
|
||||
if mode == 'upsample2d':
|
||||
self.resample = nn.Sequential(
|
||||
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
||||
ops.Conv2d(dim, dim // 2, 3, padding=1))
|
||||
elif mode == 'upsample3d':
|
||||
self.resample = nn.Sequential(
|
||||
Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
|
||||
ops.Conv2d(dim, dim // 2, 3, padding=1))
|
||||
self.time_conv = CausalConv3d(
|
||||
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
|
||||
|
||||
elif mode == 'downsample2d':
|
||||
self.resample = nn.Sequential(
|
||||
nn.ZeroPad2d((0, 1, 0, 1)),
|
||||
ops.Conv2d(dim, dim, 3, stride=(2, 2)))
|
||||
elif mode == 'downsample3d':
|
||||
self.resample = nn.Sequential(
|
||||
nn.ZeroPad2d((0, 1, 0, 1)),
|
||||
ops.Conv2d(dim, dim, 3, stride=(2, 2)))
|
||||
self.time_conv = CausalConv3d(
|
||||
dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
|
||||
|
||||
else:
|
||||
self.resample = nn.Identity()
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
b, c, t, h, w = x.size()
|
||||
if self.mode == 'upsample3d':
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
if feat_cache[idx] is None:
|
||||
feat_cache[idx] = 'Rep'
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[
|
||||
idx] is not None and feat_cache[idx] != 'Rep':
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat([
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device), cache_x
|
||||
],
|
||||
dim=2)
|
||||
if cache_x.shape[2] < 2 and feat_cache[
|
||||
idx] is not None and feat_cache[idx] == 'Rep':
|
||||
cache_x = torch.cat([
|
||||
torch.zeros_like(cache_x).to(cache_x.device),
|
||||
cache_x
|
||||
],
|
||||
dim=2)
|
||||
if feat_cache[idx] == 'Rep':
|
||||
x = self.time_conv(x)
|
||||
else:
|
||||
x = self.time_conv(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
|
||||
x = x.reshape(b, 2, c, t, h, w)
|
||||
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
|
||||
3)
|
||||
x = x.reshape(b, c, t * 2, h, w)
|
||||
t = x.shape[2]
|
||||
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
||||
x = self.resample(x)
|
||||
x = rearrange(x, '(b t) c h w -> b c t h w', t=t)
|
||||
|
||||
if self.mode == 'downsample3d':
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
if feat_cache[idx] is None:
|
||||
feat_cache[idx] = x.clone()
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
|
||||
cache_x = x[:, :, -1:, :, :].clone()
|
||||
# if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx]!='Rep':
|
||||
# # cache last frame of last two chunk
|
||||
# cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
||||
|
||||
x = self.time_conv(
|
||||
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
return x
|
||||
|
||||
def init_weight(self, conv):
|
||||
conv_weight = conv.weight
|
||||
nn.init.zeros_(conv_weight)
|
||||
c1, c2, t, h, w = conv_weight.size()
|
||||
one_matrix = torch.eye(c1, c2)
|
||||
init_matrix = one_matrix
|
||||
nn.init.zeros_(conv_weight)
|
||||
#conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
|
||||
conv_weight.data[:, :, 1, 0, 0] = init_matrix #* 0.5
|
||||
conv.weight.data.copy_(conv_weight)
|
||||
nn.init.zeros_(conv.bias.data)
|
||||
|
||||
def init_weight2(self, conv):
|
||||
conv_weight = conv.weight.data
|
||||
nn.init.zeros_(conv_weight)
|
||||
c1, c2, t, h, w = conv_weight.size()
|
||||
init_matrix = torch.eye(c1 // 2, c2)
|
||||
#init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
|
||||
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
|
||||
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
|
||||
conv.weight.data.copy_(conv_weight)
|
||||
nn.init.zeros_(conv.bias.data)
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
|
||||
def __init__(self, in_dim, out_dim, dropout=0.0):
|
||||
super().__init__()
|
||||
self.in_dim = in_dim
|
||||
self.out_dim = out_dim
|
||||
|
||||
# layers
|
||||
self.residual = nn.Sequential(
|
||||
RMS_norm(in_dim, images=False), nn.SiLU(),
|
||||
CausalConv3d(in_dim, out_dim, 3, padding=1),
|
||||
RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout),
|
||||
CausalConv3d(out_dim, out_dim, 3, padding=1))
|
||||
self.shortcut = CausalConv3d(in_dim, out_dim, 1) \
|
||||
if in_dim != out_dim else nn.Identity()
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
h = self.shortcut(x)
|
||||
for layer in self.residual:
|
||||
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat([
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device), cache_x
|
||||
],
|
||||
dim=2)
|
||||
x = layer(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = layer(x)
|
||||
return x + h
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
"""
|
||||
Causal self-attention with a single head.
|
||||
"""
|
||||
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
# layers
|
||||
self.norm = RMS_norm(dim)
|
||||
self.to_qkv = ops.Conv2d(dim, dim * 3, 1)
|
||||
self.proj = ops.Conv2d(dim, dim, 1)
|
||||
self.optimized_attention = vae_attention()
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
b, c, t, h, w = x.size()
|
||||
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
||||
x = self.norm(x)
|
||||
# compute query, key, value
|
||||
|
||||
q, k, v = self.to_qkv(x).chunk(3, dim=1)
|
||||
x = self.optimized_attention(q, k, v)
|
||||
|
||||
# output
|
||||
x = self.proj(x)
|
||||
x = rearrange(x, '(b t) c h w-> b c t h w', t=t)
|
||||
return x + identity
|
||||
|
||||
|
||||
class Encoder3d(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
dim=128,
|
||||
z_dim=4,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
temperal_downsample=[True, True, False],
|
||||
dropout=0.0):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.z_dim = z_dim
|
||||
self.dim_mult = dim_mult
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attn_scales = attn_scales
|
||||
self.temperal_downsample = temperal_downsample
|
||||
|
||||
# dimensions
|
||||
dims = [dim * u for u in [1] + dim_mult]
|
||||
scale = 1.0
|
||||
|
||||
# init block
|
||||
self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)
|
||||
|
||||
# downsample blocks
|
||||
downsamples = []
|
||||
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
||||
# residual (+attention) blocks
|
||||
for _ in range(num_res_blocks):
|
||||
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
||||
if scale in attn_scales:
|
||||
downsamples.append(AttentionBlock(out_dim))
|
||||
in_dim = out_dim
|
||||
|
||||
# downsample block
|
||||
if i != len(dim_mult) - 1:
|
||||
mode = 'downsample3d' if temperal_downsample[
|
||||
i] else 'downsample2d'
|
||||
downsamples.append(Resample(out_dim, mode=mode))
|
||||
scale /= 2.0
|
||||
self.downsamples = nn.Sequential(*downsamples)
|
||||
|
||||
# middle blocks
|
||||
self.middle = nn.Sequential(
|
||||
ResidualBlock(out_dim, out_dim, dropout), AttentionBlock(out_dim),
|
||||
ResidualBlock(out_dim, out_dim, dropout))
|
||||
|
||||
# output blocks
|
||||
self.head = nn.Sequential(
|
||||
RMS_norm(out_dim, images=False), nn.SiLU(),
|
||||
CausalConv3d(out_dim, z_dim, 3, padding=1))
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat([
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device), cache_x
|
||||
],
|
||||
dim=2)
|
||||
x = self.conv1(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv1(x)
|
||||
|
||||
## downsamples
|
||||
for layer in self.downsamples:
|
||||
if feat_cache is not None:
|
||||
x = layer(x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
## middle
|
||||
for layer in self.middle:
|
||||
if isinstance(layer, ResidualBlock) and feat_cache is not None:
|
||||
x = layer(x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
## head
|
||||
for layer in self.head:
|
||||
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat([
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device), cache_x
|
||||
],
|
||||
dim=2)
|
||||
x = layer(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
|
||||
class Decoder3d(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
dim=128,
|
||||
z_dim=4,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
temperal_upsample=[False, True, True],
|
||||
dropout=0.0):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.z_dim = z_dim
|
||||
self.dim_mult = dim_mult
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attn_scales = attn_scales
|
||||
self.temperal_upsample = temperal_upsample
|
||||
|
||||
# dimensions
|
||||
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
|
||||
scale = 1.0 / 2**(len(dim_mult) - 2)
|
||||
|
||||
# init block
|
||||
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
|
||||
|
||||
# middle blocks
|
||||
self.middle = nn.Sequential(
|
||||
ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]),
|
||||
ResidualBlock(dims[0], dims[0], dropout))
|
||||
|
||||
# upsample blocks
|
||||
upsamples = []
|
||||
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
||||
# residual (+attention) blocks
|
||||
if i == 1 or i == 2 or i == 3:
|
||||
in_dim = in_dim // 2
|
||||
for _ in range(num_res_blocks + 1):
|
||||
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
|
||||
if scale in attn_scales:
|
||||
upsamples.append(AttentionBlock(out_dim))
|
||||
in_dim = out_dim
|
||||
|
||||
# upsample block
|
||||
if i != len(dim_mult) - 1:
|
||||
mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d'
|
||||
upsamples.append(Resample(out_dim, mode=mode))
|
||||
scale *= 2.0
|
||||
self.upsamples = nn.Sequential(*upsamples)
|
||||
|
||||
# output blocks
|
||||
self.head = nn.Sequential(
|
||||
RMS_norm(out_dim, images=False), nn.SiLU(),
|
||||
CausalConv3d(out_dim, 3, 3, padding=1))
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
## conv1
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat([
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device), cache_x
|
||||
],
|
||||
dim=2)
|
||||
x = self.conv1(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv1(x)
|
||||
|
||||
## middle
|
||||
for layer in self.middle:
|
||||
if isinstance(layer, ResidualBlock) and feat_cache is not None:
|
||||
x = layer(x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
## upsamples
|
||||
for layer in self.upsamples:
|
||||
if feat_cache is not None:
|
||||
x = layer(x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
## head
|
||||
for layer in self.head:
|
||||
if isinstance(layer, CausalConv3d) and feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat([
|
||||
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
|
||||
cache_x.device), cache_x
|
||||
],
|
||||
dim=2)
|
||||
x = layer(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
|
||||
def count_conv3d(model):
|
||||
count = 0
|
||||
for m in model.modules():
|
||||
if isinstance(m, CausalConv3d):
|
||||
count += 1
|
||||
return count
|
||||
|
||||
|
||||
class WanVAE(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
dim=128,
|
||||
z_dim=4,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
temperal_downsample=[True, True, False],
|
||||
dropout=0.0):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.z_dim = z_dim
|
||||
self.dim_mult = dim_mult
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attn_scales = attn_scales
|
||||
self.temperal_downsample = temperal_downsample
|
||||
self.temperal_upsample = temperal_downsample[::-1]
|
||||
|
||||
# modules
|
||||
self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks,
|
||||
attn_scales, self.temperal_downsample, dropout)
|
||||
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
|
||||
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
|
||||
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
|
||||
attn_scales, self.temperal_upsample, dropout)
|
||||
|
||||
def forward(self, x):
|
||||
mu, log_var = self.encode(x)
|
||||
z = self.reparameterize(mu, log_var)
|
||||
x_recon = self.decode(z)
|
||||
return x_recon, mu, log_var
|
||||
|
||||
def encode(self, x):
|
||||
self.clear_cache()
|
||||
## cache
|
||||
t = x.shape[2]
|
||||
iter_ = 1 + (t - 1) // 4
|
||||
## 对encode输入的x,按时间拆分为1、4、4、4....
|
||||
for i in range(iter_):
|
||||
self._enc_conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.encoder(
|
||||
x[:, :, :1, :, :],
|
||||
feat_cache=self._enc_feat_map,
|
||||
feat_idx=self._enc_conv_idx)
|
||||
else:
|
||||
out_ = self.encoder(
|
||||
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
|
||||
feat_cache=self._enc_feat_map,
|
||||
feat_idx=self._enc_conv_idx)
|
||||
out = torch.cat([out, out_], 2)
|
||||
mu, log_var = self.conv1(out).chunk(2, dim=1)
|
||||
self.clear_cache()
|
||||
return mu
|
||||
|
||||
def decode(self, z):
|
||||
self.clear_cache()
|
||||
# z: [b,c,t,h,w]
|
||||
|
||||
iter_ = z.shape[2]
|
||||
x = self.conv2(z)
|
||||
for i in range(iter_):
|
||||
self._conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.decoder(
|
||||
x[:, :, i:i + 1, :, :],
|
||||
feat_cache=self._feat_map,
|
||||
feat_idx=self._conv_idx)
|
||||
else:
|
||||
out_ = self.decoder(
|
||||
x[:, :, i:i + 1, :, :],
|
||||
feat_cache=self._feat_map,
|
||||
feat_idx=self._conv_idx)
|
||||
out = torch.cat([out, out_], 2)
|
||||
self.clear_cache()
|
||||
return out
|
||||
|
||||
def reparameterize(self, mu, log_var):
|
||||
std = torch.exp(0.5 * log_var)
|
||||
eps = torch.randn_like(std)
|
||||
return eps * std + mu
|
||||
|
||||
def sample(self, imgs, deterministic=False):
|
||||
mu, log_var = self.encode(imgs)
|
||||
if deterministic:
|
||||
return mu
|
||||
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
|
||||
return mu + std * torch.randn_like(std)
|
||||
|
||||
def clear_cache(self):
|
||||
self._conv_num = count_conv3d(self.decoder)
|
||||
self._conv_idx = [0]
|
||||
self._feat_map = [None] * self._conv_num
|
||||
#cache encode
|
||||
self._enc_conv_num = count_conv3d(self.encoder)
|
||||
self._enc_conv_idx = [0]
|
||||
self._enc_feat_map = [None] * self._enc_conv_num
|
@ -35,6 +35,7 @@ import comfy.ldm.lightricks.model
|
||||
import comfy.ldm.hunyuan_video.model
|
||||
import comfy.ldm.cosmos.model
|
||||
import comfy.ldm.lumina.model
|
||||
import comfy.ldm.wan.model
|
||||
|
||||
import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
@ -927,3 +928,14 @@ class Lumina2(BaseModel):
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
return out
|
||||
|
||||
class WAN21_T2V(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
return out
|
||||
|
@ -299,6 +299,26 @@ def detect_unet_config(state_dict, key_prefix):
|
||||
dit_config["axes_lens"] = [300, 512, 512]
|
||||
return dit_config
|
||||
|
||||
if '{}head.modulation'.format(key_prefix) in state_dict_keys: # Wan 2.1
|
||||
dit_config = {}
|
||||
dit_config["image_model"] = "wan2.1"
|
||||
dim = state_dict['{}head.modulation'.format(key_prefix)].shape[-1]
|
||||
dit_config["dim"] = dim
|
||||
dit_config["num_heads"] = dim // 128
|
||||
dit_config["ffn_dim"] = state_dict['{}blocks.0.ffn.0.weight'.format(key_prefix)].shape[0]
|
||||
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["patch_size"] = (1, 2, 2)
|
||||
dit_config["freq_dim"] = 256
|
||||
dit_config["window_size"] = (-1, -1)
|
||||
dit_config["qk_norm"] = True
|
||||
dit_config["cross_attn_norm"] = True
|
||||
dit_config["eps"] = 1e-6
|
||||
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["model_type"] = "i2v"
|
||||
else:
|
||||
dit_config["model_type"] = "t2v"
|
||||
return dit_config
|
||||
|
||||
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
|
||||
return None
|
||||
|
||||
|
19
comfy/sd.py
19
comfy/sd.py
@ -12,6 +12,7 @@ from .ldm.audio.autoencoder import AudioOobleckVAE
|
||||
import comfy.ldm.genmo.vae.model
|
||||
import comfy.ldm.lightricks.vae.causal_video_autoencoder
|
||||
import comfy.ldm.cosmos.vae
|
||||
import comfy.ldm.wan.vae
|
||||
import yaml
|
||||
import math
|
||||
|
||||
@ -37,6 +38,7 @@ import comfy.text_encoders.lt
|
||||
import comfy.text_encoders.hunyuan_video
|
||||
import comfy.text_encoders.cosmos
|
||||
import comfy.text_encoders.lumina2
|
||||
import comfy.text_encoders.wan
|
||||
|
||||
import comfy.model_patcher
|
||||
import comfy.lora
|
||||
@ -392,6 +394,18 @@ class VAE:
|
||||
self.memory_used_decode = lambda shape, dtype: (50 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
|
||||
self.memory_used_encode = lambda shape, dtype: (50 * (round((shape[2] + 7) / 8) * 8) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float32]
|
||||
elif "decoder.middle.0.residual.0.gamma" in sd:
|
||||
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
|
||||
self.upscale_index_formula = (4, 8, 8)
|
||||
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
|
||||
self.downscale_index_formula = (4, 8, 8)
|
||||
self.latent_dim = 3
|
||||
self.latent_channels = 16
|
||||
ddconfig = {"dim": 96, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
|
||||
self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig)
|
||||
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
|
||||
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
|
||||
else:
|
||||
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
|
||||
self.first_stage_model = None
|
||||
@ -659,6 +673,7 @@ class CLIPType(Enum):
|
||||
PIXART = 10
|
||||
COSMOS = 11
|
||||
LUMINA2 = 12
|
||||
WAN = 13
|
||||
|
||||
|
||||
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||
@ -763,6 +778,10 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
elif clip_type == CLIPType.PIXART:
|
||||
clip_target.clip = comfy.text_encoders.pixart_t5.pixart_te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.pixart_t5.PixArtTokenizer
|
||||
elif clip_type == CLIPType.WAN:
|
||||
clip_target.clip = comfy.text_encoders.wan.te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.wan.WanT5Tokenizer
|
||||
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
|
||||
else: #CLIPType.MOCHI
|
||||
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer
|
||||
|
@ -16,6 +16,7 @@ import comfy.text_encoders.lt
|
||||
import comfy.text_encoders.hunyuan_video
|
||||
import comfy.text_encoders.cosmos
|
||||
import comfy.text_encoders.lumina2
|
||||
import comfy.text_encoders.wan
|
||||
|
||||
from . import supported_models_base
|
||||
from . import latent_formats
|
||||
@ -895,6 +896,35 @@ class Lumina2(supported_models_base.BASE):
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}gemma2_2b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.lumina2.LuminaTokenizer, comfy.text_encoders.lumina2.te(**hunyuan_detect))
|
||||
|
||||
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2]
|
||||
class WAN21_T2V(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "wan2.1",
|
||||
"model_type": "t2v",
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 8.0,
|
||||
}
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.Wan21
|
||||
|
||||
memory_usage_factor = 1.0
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN21_T2V(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}umt5xxl.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.wan.WanT5Tokenizer, comfy.text_encoders.wan.te(**t5_detect))
|
||||
|
||||
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V]
|
||||
|
||||
models += [SVD_img2vid]
|
||||
|
22
comfy/text_encoders/umt5_config_xxl.json
Normal file
22
comfy/text_encoders/umt5_config_xxl.json
Normal file
@ -0,0 +1,22 @@
|
||||
{
|
||||
"d_ff": 10240,
|
||||
"d_kv": 64,
|
||||
"d_model": 4096,
|
||||
"decoder_start_token_id": 0,
|
||||
"dropout_rate": 0.1,
|
||||
"eos_token_id": 1,
|
||||
"dense_act_fn": "gelu_pytorch_tanh",
|
||||
"initializer_factor": 1.0,
|
||||
"is_encoder_decoder": true,
|
||||
"is_gated_act": true,
|
||||
"layer_norm_epsilon": 1e-06,
|
||||
"model_type": "umt5",
|
||||
"num_decoder_layers": 24,
|
||||
"num_heads": 64,
|
||||
"num_layers": 24,
|
||||
"output_past": true,
|
||||
"pad_token_id": 0,
|
||||
"relative_attention_num_buckets": 32,
|
||||
"tie_word_embeddings": false,
|
||||
"vocab_size": 256384
|
||||
}
|
37
comfy/text_encoders/wan.py
Normal file
37
comfy/text_encoders/wan.py
Normal file
@ -0,0 +1,37 @@
|
||||
from comfy import sd1_clip
|
||||
from .spiece_tokenizer import SPieceTokenizer
|
||||
import comfy.text_encoders.t5
|
||||
import os
|
||||
|
||||
class UMT5XXlModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "umt5_config_xxl.json")
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, zero_out_masked=True, model_options=model_options)
|
||||
|
||||
class UMT5XXlTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=4096, embedding_key='umt5xxl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=0)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
|
||||
|
||||
class WanT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="umt5xxl", tokenizer=UMT5XXlTokenizer)
|
||||
|
||||
class WanT5Model(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options, name="umt5xxl", clip_model=UMT5XXlModel, **kwargs)
|
||||
|
||||
def te(dtype_t5=None, t5xxl_scaled_fp8=None):
|
||||
class WanTEModel(WanT5Model):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = t5xxl_scaled_fp8
|
||||
if dtype_t5 is not None:
|
||||
dtype = dtype_t5
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return WanTEModel
|
6
nodes.py
6
nodes.py
@ -914,7 +914,7 @@ class CLIPLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ),
|
||||
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2"], ),
|
||||
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan"], ),
|
||||
},
|
||||
"optional": {
|
||||
"device": (["default", "cpu"], {"advanced": True}),
|
||||
@ -924,7 +924,7 @@ class CLIPLoader:
|
||||
|
||||
CATEGORY = "advanced/loaders"
|
||||
|
||||
DESCRIPTION = "[Recipes]\n\nstable_diffusion: clip-l\nstable_cascade: clip-g\nsd3: t5 / clip-g / clip-l\nstable_audio: t5\nmochi: t5\ncosmos: old t5 xxl\nlumina2: gemma 2 2B"
|
||||
DESCRIPTION = "[Recipes]\n\nstable_diffusion: clip-l\nstable_cascade: clip-g\nsd3: t5 xxl/ clip-g / clip-l\nstable_audio: t5 base\nmochi: t5 xxl\ncosmos: old t5 xxl\nlumina2: gemma 2 2B\nwan: umt5 xxl"
|
||||
|
||||
def load_clip(self, clip_name, type="stable_diffusion", device="default"):
|
||||
if type == "stable_cascade":
|
||||
@ -943,6 +943,8 @@ class CLIPLoader:
|
||||
clip_type = comfy.sd.CLIPType.COSMOS
|
||||
elif type == "lumina2":
|
||||
clip_type = comfy.sd.CLIPType.LUMINA2
|
||||
elif type == "wan":
|
||||
clip_type = comfy.sd.CLIPType.WAN
|
||||
else:
|
||||
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user