mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Reshape the empty latent image to the right amount of channels if needed.
This commit is contained in:
parent
56333d4850
commit
6cd8ffc465
@ -2,6 +2,7 @@ import torch
|
||||
|
||||
class LatentFormat:
|
||||
scale_factor = 1.0
|
||||
latent_channels = 4
|
||||
latent_rgb_factors = None
|
||||
taesd_decoder_name = None
|
||||
|
||||
@ -72,6 +73,7 @@ class SD_X4(LatentFormat):
|
||||
]
|
||||
|
||||
class SC_Prior(LatentFormat):
|
||||
latent_channels = 16
|
||||
def __init__(self):
|
||||
self.scale_factor = 1.0
|
||||
self.latent_rgb_factors = [
|
||||
|
@ -24,6 +24,12 @@ def prepare_noise(latent_image, seed, noise_inds=None):
|
||||
noises = torch.cat(noises, axis=0)
|
||||
return noises
|
||||
|
||||
def fix_empty_latent_channels(model, latent_image):
|
||||
latent_channels = model.get_model_object("latent_format").latent_channels #Resize the empty latent image so it has the right number of channels
|
||||
if latent_channels != latent_image.shape[1] and torch.count_nonzero(latent_image) == 0:
|
||||
latent_image = comfy.utils.repeat_to_batch_size(latent_image, latent_channels, dim=1)
|
||||
return latent_image
|
||||
|
||||
def prepare_sampling(model, noise_shape, positive, negative, noise_mask):
|
||||
logging.warning("Warning: comfy.sample.prepare_sampling isn't used anymore and can be removed")
|
||||
return model, positive, negative, noise_mask, []
|
||||
|
@ -249,11 +249,11 @@ def unet_to_diffusers(unet_config):
|
||||
|
||||
return diffusers_unet_map
|
||||
|
||||
def repeat_to_batch_size(tensor, batch_size):
|
||||
if tensor.shape[0] > batch_size:
|
||||
return tensor[:batch_size]
|
||||
elif tensor.shape[0] < batch_size:
|
||||
return tensor.repeat([math.ceil(batch_size / tensor.shape[0])] + [1] * (len(tensor.shape) - 1))[:batch_size]
|
||||
def repeat_to_batch_size(tensor, batch_size, dim=0):
|
||||
if tensor.shape[dim] > batch_size:
|
||||
return tensor.narrow(dim, 0, batch_size)
|
||||
elif tensor.shape[dim] < batch_size:
|
||||
return tensor.repeat(dim * [1] + [math.ceil(batch_size / tensor.shape[dim])] + [1] * (len(tensor.shape) - 1 - dim)).narrow(dim, 0, batch_size)
|
||||
return tensor
|
||||
|
||||
def resize_to_batch_size(tensor, batch_size):
|
||||
|
@ -380,6 +380,7 @@ class SamplerCustom:
|
||||
def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image):
|
||||
latent = latent_image
|
||||
latent_image = latent["samples"]
|
||||
latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)
|
||||
if not add_noise:
|
||||
noise = Noise_EmptyNoise().generate_noise(latent)
|
||||
else:
|
||||
@ -538,6 +539,7 @@ class SamplerCustomAdvanced:
|
||||
def sample(self, noise, guider, sampler, sigmas, latent_image):
|
||||
latent = latent_image
|
||||
latent_image = latent["samples"]
|
||||
latent_image = comfy.sample.fix_empty_latent_channels(guider.model_patcher, latent_image)
|
||||
|
||||
noise_mask = None
|
||||
if "noise_mask" in latent:
|
||||
|
2
nodes.py
2
nodes.py
@ -1299,6 +1299,8 @@ class SetLatentNoiseMask:
|
||||
|
||||
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
||||
latent_image = latent["samples"]
|
||||
latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)
|
||||
|
||||
if disable_noise:
|
||||
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
||||
else:
|
||||
|
Loading…
Reference in New Issue
Block a user