Support SSD1B model and make it easier to support asymmetric unets.

This commit is contained in:
comfyanonymous 2023-10-27 14:15:45 -04:00
parent 434ce25ec0
commit 6ec3f12c6e
6 changed files with 153 additions and 96 deletions

View File

@ -27,7 +27,6 @@ class ControlNet(nn.Module):
model_channels, model_channels,
hint_channels, hint_channels,
num_res_blocks, num_res_blocks,
attention_resolutions,
dropout=0, dropout=0,
channel_mult=(1, 2, 4, 8), channel_mult=(1, 2, 4, 8),
conv_resample=True, conv_resample=True,
@ -52,6 +51,7 @@ class ControlNet(nn.Module):
use_linear_in_transformer=False, use_linear_in_transformer=False,
adm_in_channels=None, adm_in_channels=None,
transformer_depth_middle=None, transformer_depth_middle=None,
transformer_depth_output=None,
device=None, device=None,
operations=comfy.ops, operations=comfy.ops,
): ):
@ -79,10 +79,7 @@ class ControlNet(nn.Module):
self.image_size = image_size self.image_size = image_size
self.in_channels = in_channels self.in_channels = in_channels
self.model_channels = model_channels self.model_channels = model_channels
if isinstance(transformer_depth, int):
transformer_depth = len(channel_mult) * [transformer_depth]
if transformer_depth_middle is None:
transformer_depth_middle = transformer_depth[-1]
if isinstance(num_res_blocks, int): if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks] self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else: else:
@ -90,18 +87,16 @@ class ControlNet(nn.Module):
raise ValueError("provide num_res_blocks either as an int (globally constant) or " raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult") "as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None: if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult) assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None: if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks) assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions transformer_depth = transformer_depth[:]
self.dropout = dropout self.dropout = dropout
self.channel_mult = channel_mult self.channel_mult = channel_mult
self.conv_resample = conv_resample self.conv_resample = conv_resample
@ -180,11 +175,14 @@ class ControlNet(nn.Module):
dims=dims, dims=dims,
use_checkpoint=use_checkpoint, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, use_scale_shift_norm=use_scale_shift_norm,
operations=operations dtype=self.dtype,
device=device,
operations=operations,
) )
] ]
ch = mult * model_channels ch = mult * model_channels
if ds in attention_resolutions: num_transformers = transformer_depth.pop(0)
if num_transformers > 0:
if num_head_channels == -1: if num_head_channels == -1:
dim_head = ch // num_heads dim_head = ch // num_heads
else: else:
@ -201,9 +199,9 @@ class ControlNet(nn.Module):
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append( layers.append(
SpatialTransformer( SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim, ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint, operations=operations use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
) )
) )
self.input_blocks.append(TimestepEmbedSequential(*layers)) self.input_blocks.append(TimestepEmbedSequential(*layers))
@ -223,11 +221,13 @@ class ControlNet(nn.Module):
use_checkpoint=use_checkpoint, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, use_scale_shift_norm=use_scale_shift_norm,
down=True, down=True,
dtype=self.dtype,
device=device,
operations=operations operations=operations
) )
if resblock_updown if resblock_updown
else Downsample( else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch, operations=operations ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
) )
) )
) )
@ -245,7 +245,7 @@ class ControlNet(nn.Module):
if legacy: if legacy:
#num_heads = 1 #num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential( mid_block = [
ResBlock( ResBlock(
ch, ch,
time_embed_dim, time_embed_dim,
@ -253,12 +253,15 @@ class ControlNet(nn.Module):
dims=dims, dims=dims,
use_checkpoint=use_checkpoint, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, use_scale_shift_norm=use_scale_shift_norm,
dtype=self.dtype,
device=device,
operations=operations operations=operations
), )]
SpatialTransformer( # always uses a self-attn if transformer_depth_middle >= 0:
mid_block += [SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint, operations=operations use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
), ),
ResBlock( ResBlock(
ch, ch,
@ -267,9 +270,11 @@ class ControlNet(nn.Module):
dims=dims, dims=dims,
use_checkpoint=use_checkpoint, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, use_scale_shift_norm=use_scale_shift_norm,
dtype=self.dtype,
device=device,
operations=operations operations=operations
), )]
) self.middle_block = TimestepEmbedSequential(*mid_block)
self.middle_block_out = self.make_zero_conv(ch, operations=operations) self.middle_block_out = self.make_zero_conv(ch, operations=operations)
self._feature_size += ch self._feature_size += ch

View File

@ -259,10 +259,6 @@ class UNetModel(nn.Module):
:param model_channels: base channel count for the model. :param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor. :param out_channels: channels in the output Tensor.
:param num_res_blocks: number of residual blocks per downsample. :param num_res_blocks: number of residual blocks per downsample.
:param attention_resolutions: a collection of downsample rates at which
attention will take place. May be a set, list, or tuple.
For example, if this contains 4, then at 4x downsampling, attention
will be used.
:param dropout: the dropout probability. :param dropout: the dropout probability.
:param channel_mult: channel multiplier for each level of the UNet. :param channel_mult: channel multiplier for each level of the UNet.
:param conv_resample: if True, use learned convolutions for upsampling and :param conv_resample: if True, use learned convolutions for upsampling and
@ -289,7 +285,6 @@ class UNetModel(nn.Module):
model_channels, model_channels,
out_channels, out_channels,
num_res_blocks, num_res_blocks,
attention_resolutions,
dropout=0, dropout=0,
channel_mult=(1, 2, 4, 8), channel_mult=(1, 2, 4, 8),
conv_resample=True, conv_resample=True,
@ -314,6 +309,7 @@ class UNetModel(nn.Module):
use_linear_in_transformer=False, use_linear_in_transformer=False,
adm_in_channels=None, adm_in_channels=None,
transformer_depth_middle=None, transformer_depth_middle=None,
transformer_depth_output=None,
device=None, device=None,
operations=comfy.ops, operations=comfy.ops,
): ):
@ -341,10 +337,7 @@ class UNetModel(nn.Module):
self.in_channels = in_channels self.in_channels = in_channels
self.model_channels = model_channels self.model_channels = model_channels
self.out_channels = out_channels self.out_channels = out_channels
if isinstance(transformer_depth, int):
transformer_depth = len(channel_mult) * [transformer_depth]
if transformer_depth_middle is None:
transformer_depth_middle = transformer_depth[-1]
if isinstance(num_res_blocks, int): if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks] self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else: else:
@ -352,18 +345,16 @@ class UNetModel(nn.Module):
raise ValueError("provide num_res_blocks either as an int (globally constant) or " raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult") "as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None: if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult) assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None: if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks) assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions transformer_depth = transformer_depth[:]
transformer_depth_output = transformer_depth_output[:]
self.dropout = dropout self.dropout = dropout
self.channel_mult = channel_mult self.channel_mult = channel_mult
self.conv_resample = conv_resample self.conv_resample = conv_resample
@ -428,7 +419,8 @@ class UNetModel(nn.Module):
) )
] ]
ch = mult * model_channels ch = mult * model_channels
if ds in attention_resolutions: num_transformers = transformer_depth.pop(0)
if num_transformers > 0:
if num_head_channels == -1: if num_head_channels == -1:
dim_head = ch // num_heads dim_head = ch // num_heads
else: else:
@ -444,7 +436,7 @@ class UNetModel(nn.Module):
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append(SpatialTransformer( layers.append(SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim, ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
) )
@ -488,7 +480,7 @@ class UNetModel(nn.Module):
if legacy: if legacy:
#num_heads = 1 #num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential( mid_block = [
ResBlock( ResBlock(
ch, ch,
time_embed_dim, time_embed_dim,
@ -499,8 +491,9 @@ class UNetModel(nn.Module):
dtype=self.dtype, dtype=self.dtype,
device=device, device=device,
operations=operations operations=operations
), )]
SpatialTransformer( # always uses a self-attn if transformer_depth_middle >= 0:
mid_block += [SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
@ -515,8 +508,8 @@ class UNetModel(nn.Module):
dtype=self.dtype, dtype=self.dtype,
device=device, device=device,
operations=operations operations=operations
), )]
) self.middle_block = TimestepEmbedSequential(*mid_block)
self._feature_size += ch self._feature_size += ch
self.output_blocks = nn.ModuleList([]) self.output_blocks = nn.ModuleList([])
@ -538,7 +531,8 @@ class UNetModel(nn.Module):
) )
] ]
ch = model_channels * mult ch = model_channels * mult
if ds in attention_resolutions: num_transformers = transformer_depth_output.pop()
if num_transformers > 0:
if num_head_channels == -1: if num_head_channels == -1:
dim_head = ch // num_heads dim_head = ch // num_heads
else: else:
@ -555,7 +549,7 @@ class UNetModel(nn.Module):
if not exists(num_attention_blocks) or i < num_attention_blocks[level]: if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
layers.append( layers.append(
SpatialTransformer( SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim, ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
) )

View File

@ -14,6 +14,19 @@ def count_blocks(state_dict_keys, prefix_string):
count += 1 count += 1
return count return count
def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
context_dim = None
use_linear_in_transformer = False
transformer_prefix = prefix + "1.transformer_blocks."
transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
if len(transformer_keys) > 0:
last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
return last_transformer_depth, context_dim, use_linear_in_transformer
return None
def detect_unet_config(state_dict, key_prefix, dtype): def detect_unet_config(state_dict, key_prefix, dtype):
state_dict_keys = list(state_dict.keys()) state_dict_keys = list(state_dict.keys())
@ -40,6 +53,7 @@ def detect_unet_config(state_dict, key_prefix, dtype):
channel_mult = [] channel_mult = []
attention_resolutions = [] attention_resolutions = []
transformer_depth = [] transformer_depth = []
transformer_depth_output = []
context_dim = None context_dim = None
use_linear_in_transformer = False use_linear_in_transformer = False
@ -48,60 +62,67 @@ def detect_unet_config(state_dict, key_prefix, dtype):
count = 0 count = 0
last_res_blocks = 0 last_res_blocks = 0
last_transformer_depth = 0
last_channel_mult = 0 last_channel_mult = 0
while True: input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.')
for count in range(input_block_count):
prefix = '{}input_blocks.{}.'.format(key_prefix, count) prefix = '{}input_blocks.{}.'.format(key_prefix, count)
prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1)
block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys))) block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys)))
if len(block_keys) == 0: if len(block_keys) == 0:
break break
block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys)))
if "{}0.op.weight".format(prefix) in block_keys: #new layer if "{}0.op.weight".format(prefix) in block_keys: #new layer
if last_transformer_depth > 0:
attention_resolutions.append(current_res)
transformer_depth.append(last_transformer_depth)
num_res_blocks.append(last_res_blocks) num_res_blocks.append(last_res_blocks)
channel_mult.append(last_channel_mult) channel_mult.append(last_channel_mult)
current_res *= 2 current_res *= 2
last_res_blocks = 0 last_res_blocks = 0
last_transformer_depth = 0
last_channel_mult = 0 last_channel_mult = 0
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
if out is not None:
transformer_depth_output.append(out[0])
else:
transformer_depth_output.append(0)
else: else:
res_block_prefix = "{}0.in_layers.0.weight".format(prefix) res_block_prefix = "{}0.in_layers.0.weight".format(prefix)
if res_block_prefix in block_keys: if res_block_prefix in block_keys:
last_res_blocks += 1 last_res_blocks += 1
last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels
transformer_prefix = prefix + "1.transformer_blocks." out = calculate_transformer_depth(prefix, state_dict_keys, state_dict)
transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys))) if out is not None:
if len(transformer_keys) > 0: transformer_depth.append(out[0])
last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}') if context_dim is None:
if context_dim is None: context_dim = out[1]
context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1] use_linear_in_transformer = out[2]
use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2 else:
transformer_depth.append(0)
res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output)
if res_block_prefix in block_keys_output:
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
if out is not None:
transformer_depth_output.append(out[0])
else:
transformer_depth_output.append(0)
count += 1
if last_transformer_depth > 0:
attention_resolutions.append(current_res)
transformer_depth.append(last_transformer_depth)
num_res_blocks.append(last_res_blocks) num_res_blocks.append(last_res_blocks)
channel_mult.append(last_channel_mult) channel_mult.append(last_channel_mult)
transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}') if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys:
transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
if len(set(num_res_blocks)) == 1: else:
num_res_blocks = num_res_blocks[0] transformer_depth_middle = -1
if len(set(transformer_depth)) == 1:
transformer_depth = transformer_depth[0]
unet_config["in_channels"] = in_channels unet_config["in_channels"] = in_channels
unet_config["model_channels"] = model_channels unet_config["model_channels"] = model_channels
unet_config["num_res_blocks"] = num_res_blocks unet_config["num_res_blocks"] = num_res_blocks
unet_config["attention_resolutions"] = attention_resolutions
unet_config["transformer_depth"] = transformer_depth unet_config["transformer_depth"] = transformer_depth
unet_config["transformer_depth_output"] = transformer_depth_output
unet_config["channel_mult"] = channel_mult unet_config["channel_mult"] = channel_mult
unet_config["transformer_depth_middle"] = transformer_depth_middle unet_config["transformer_depth_middle"] = transformer_depth_middle
unet_config['use_linear_in_transformer'] = use_linear_in_transformer unet_config['use_linear_in_transformer'] = use_linear_in_transformer
@ -124,6 +145,45 @@ def model_config_from_unet(state_dict, unet_key_prefix, dtype, use_base_if_no_ma
else: else:
return model_config return model_config
def convert_config(unet_config):
new_config = unet_config.copy()
num_res_blocks = new_config.get("num_res_blocks", None)
channel_mult = new_config.get("channel_mult", None)
if isinstance(num_res_blocks, int):
num_res_blocks = len(channel_mult) * [num_res_blocks]
if "attention_resolutions" in new_config:
attention_resolutions = new_config.pop("attention_resolutions")
transformer_depth = new_config.get("transformer_depth", None)
transformer_depth_middle = new_config.get("transformer_depth_middle", None)
if isinstance(transformer_depth, int):
transformer_depth = len(channel_mult) * [transformer_depth]
if transformer_depth_middle is None:
transformer_depth_middle = transformer_depth[-1]
t_in = []
t_out = []
s = 1
for i in range(len(num_res_blocks)):
res = num_res_blocks[i]
d = 0
if s in attention_resolutions:
d = transformer_depth[i]
t_in += [d] * res
t_out += [d] * (res + 1)
s *= 2
transformer_depth = t_in
transformer_depth_output = t_out
new_config["transformer_depth"] = t_in
new_config["transformer_depth_output"] = t_out
new_config["transformer_depth_middle"] = transformer_depth_middle
new_config["num_res_blocks"] = num_res_blocks
return new_config
def unet_config_from_diffusers_unet(state_dict, dtype): def unet_config_from_diffusers_unet(state_dict, dtype):
match = {} match = {}
attention_resolutions = [] attention_resolutions = []
@ -200,7 +260,7 @@ def unet_config_from_diffusers_unet(state_dict, dtype):
matches = False matches = False
break break
if matches: if matches:
return unet_config return convert_config(unet_config)
return None return None
def model_config_from_diffusers_unet(state_dict, dtype): def model_config_from_diffusers_unet(state_dict, dtype):

View File

@ -360,7 +360,7 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
from . import latent_formats from . import latent_formats
model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor) model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)
model_config.unet_config = unet_config model_config.unet_config = model_detection.convert_config(unet_config)
if config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"): if config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], model_type=model_type) model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], model_type=model_type)

View File

@ -104,7 +104,7 @@ class SDXLRefiner(supported_models_base.BASE):
"use_linear_in_transformer": True, "use_linear_in_transformer": True,
"context_dim": 1280, "context_dim": 1280,
"adm_in_channels": 2560, "adm_in_channels": 2560,
"transformer_depth": [0, 4, 4, 0], "transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0],
} }
latent_format = latent_formats.SDXL latent_format = latent_formats.SDXL
@ -139,7 +139,7 @@ class SDXL(supported_models_base.BASE):
unet_config = { unet_config = {
"model_channels": 320, "model_channels": 320,
"use_linear_in_transformer": True, "use_linear_in_transformer": True,
"transformer_depth": [0, 2, 10], "transformer_depth": [0, 0, 2, 2, 10, 10],
"context_dim": 2048, "context_dim": 2048,
"adm_in_channels": 2816 "adm_in_channels": 2816
} }
@ -165,6 +165,7 @@ class SDXL(supported_models_base.BASE):
replace_prefix["conditioner.embedders.0.transformer.text_model"] = "cond_stage_model.clip_l.transformer.text_model" replace_prefix["conditioner.embedders.0.transformer.text_model"] = "cond_stage_model.clip_l.transformer.text_model"
state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.1.model.", "cond_stage_model.clip_g.transformer.text_model.", 32) state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.1.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
keys_to_replace["conditioner.embedders.1.model.text_projection"] = "cond_stage_model.clip_g.text_projection" keys_to_replace["conditioner.embedders.1.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
keys_to_replace["conditioner.embedders.1.model.text_projection.weight"] = "cond_stage_model.clip_g.text_projection"
keys_to_replace["conditioner.embedders.1.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale" keys_to_replace["conditioner.embedders.1.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale"
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix) state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
@ -189,5 +190,14 @@ class SDXL(supported_models_base.BASE):
def clip_target(self): def clip_target(self):
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel) return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)
class SSD1B(SDXL):
unet_config = {
"model_channels": 320,
"use_linear_in_transformer": True,
"transformer_depth": [0, 0, 2, 2, 4, 4],
"context_dim": 2048,
"adm_in_channels": 2816
}
models = [SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL]
models = [SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL, SSD1B]

View File

@ -170,25 +170,12 @@ UNET_MAP_BASIC = {
def unet_to_diffusers(unet_config): def unet_to_diffusers(unet_config):
num_res_blocks = unet_config["num_res_blocks"] num_res_blocks = unet_config["num_res_blocks"]
attention_resolutions = unet_config["attention_resolutions"]
channel_mult = unet_config["channel_mult"] channel_mult = unet_config["channel_mult"]
transformer_depth = unet_config["transformer_depth"] transformer_depth = unet_config["transformer_depth"][:]
transformer_depth_output = unet_config["transformer_depth_output"][:]
num_blocks = len(channel_mult) num_blocks = len(channel_mult)
if isinstance(num_res_blocks, int):
num_res_blocks = [num_res_blocks] * num_blocks
if isinstance(transformer_depth, int):
transformer_depth = [transformer_depth] * num_blocks
transformers_per_layer = [] transformers_mid = unet_config.get("transformer_depth_middle", None)
res = 1
for i in range(num_blocks):
transformers = 0
if res in attention_resolutions:
transformers = transformer_depth[i]
transformers_per_layer.append(transformers)
res *= 2
transformers_mid = unet_config.get("transformer_depth_middle", transformer_depth[-1])
diffusers_unet_map = {} diffusers_unet_map = {}
for x in range(num_blocks): for x in range(num_blocks):
@ -196,10 +183,11 @@ def unet_to_diffusers(unet_config):
for i in range(num_res_blocks[x]): for i in range(num_res_blocks[x]):
for b in UNET_MAP_RESNET: for b in UNET_MAP_RESNET:
diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b) diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
if transformers_per_layer[x] > 0: num_transformers = transformer_depth.pop(0)
if num_transformers > 0:
for b in UNET_MAP_ATTENTIONS: for b in UNET_MAP_ATTENTIONS:
diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b) diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b)
for t in range(transformers_per_layer[x]): for t in range(num_transformers):
for b in TRANSFORMER_BLOCKS: for b in TRANSFORMER_BLOCKS:
diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b) diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
n += 1 n += 1
@ -218,7 +206,6 @@ def unet_to_diffusers(unet_config):
diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b) diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)
num_res_blocks = list(reversed(num_res_blocks)) num_res_blocks = list(reversed(num_res_blocks))
transformers_per_layer = list(reversed(transformers_per_layer))
for x in range(num_blocks): for x in range(num_blocks):
n = (num_res_blocks[x] + 1) * x n = (num_res_blocks[x] + 1) * x
l = num_res_blocks[x] + 1 l = num_res_blocks[x] + 1
@ -227,11 +214,12 @@ def unet_to_diffusers(unet_config):
for b in UNET_MAP_RESNET: for b in UNET_MAP_RESNET:
diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b) diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b)
c += 1 c += 1
if transformers_per_layer[x] > 0: num_transformers = transformer_depth_output.pop()
if num_transformers > 0:
c += 1 c += 1
for b in UNET_MAP_ATTENTIONS: for b in UNET_MAP_ATTENTIONS:
diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b) diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b)
for t in range(transformers_per_layer[x]): for t in range(num_transformers):
for b in TRANSFORMER_BLOCKS: for b in TRANSFORMER_BLOCKS:
diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b) diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
if i == l - 1: if i == l - 1: