mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 02:15:17 +00:00
Support SSD1B model and make it easier to support asymmetric unets.
This commit is contained in:
parent
434ce25ec0
commit
6ec3f12c6e
@ -27,7 +27,6 @@ class ControlNet(nn.Module):
|
||||
model_channels,
|
||||
hint_channels,
|
||||
num_res_blocks,
|
||||
attention_resolutions,
|
||||
dropout=0,
|
||||
channel_mult=(1, 2, 4, 8),
|
||||
conv_resample=True,
|
||||
@ -52,6 +51,7 @@ class ControlNet(nn.Module):
|
||||
use_linear_in_transformer=False,
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
transformer_depth_output=None,
|
||||
device=None,
|
||||
operations=comfy.ops,
|
||||
):
|
||||
@ -79,10 +79,7 @@ class ControlNet(nn.Module):
|
||||
self.image_size = image_size
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
if isinstance(transformer_depth, int):
|
||||
transformer_depth = len(channel_mult) * [transformer_depth]
|
||||
if transformer_depth_middle is None:
|
||||
transformer_depth_middle = transformer_depth[-1]
|
||||
|
||||
if isinstance(num_res_blocks, int):
|
||||
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
else:
|
||||
@ -90,18 +87,16 @@ class ControlNet(nn.Module):
|
||||
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
||||
"as a list/tuple (per-level) with the same length as channel_mult")
|
||||
self.num_res_blocks = num_res_blocks
|
||||
|
||||
if disable_self_attentions is not None:
|
||||
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
||||
assert len(disable_self_attentions) == len(channel_mult)
|
||||
if num_attention_blocks is not None:
|
||||
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
||||
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
||||
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
||||
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
||||
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
||||
f"attention will still not be set.")
|
||||
|
||||
self.attention_resolutions = attention_resolutions
|
||||
transformer_depth = transformer_depth[:]
|
||||
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
@ -180,11 +175,14 @@ class ControlNet(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
operations=operations
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
if ds in attention_resolutions:
|
||||
num_transformers = transformer_depth.pop(0)
|
||||
if num_transformers > 0:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
@ -201,9 +199,9 @@ class ControlNet(nn.Module):
|
||||
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
||||
layers.append(
|
||||
SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
|
||||
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, operations=operations
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
@ -223,11 +221,13 @@ class ControlNet(nn.Module):
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=True,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, operations=operations
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
)
|
||||
)
|
||||
@ -245,7 +245,7 @@ class ControlNet(nn.Module):
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
mid_block = [
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
@ -253,12 +253,15 @@ class ControlNet(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
),
|
||||
SpatialTransformer( # always uses a self-attn
|
||||
)]
|
||||
if transformer_depth_middle >= 0:
|
||||
mid_block += [SpatialTransformer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, operations=operations
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
@ -267,9 +270,11 @@ class ControlNet(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
),
|
||||
)
|
||||
)]
|
||||
self.middle_block = TimestepEmbedSequential(*mid_block)
|
||||
self.middle_block_out = self.make_zero_conv(ch, operations=operations)
|
||||
self._feature_size += ch
|
||||
|
||||
|
@ -259,10 +259,6 @@ class UNetModel(nn.Module):
|
||||
:param model_channels: base channel count for the model.
|
||||
:param out_channels: channels in the output Tensor.
|
||||
:param num_res_blocks: number of residual blocks per downsample.
|
||||
:param attention_resolutions: a collection of downsample rates at which
|
||||
attention will take place. May be a set, list, or tuple.
|
||||
For example, if this contains 4, then at 4x downsampling, attention
|
||||
will be used.
|
||||
:param dropout: the dropout probability.
|
||||
:param channel_mult: channel multiplier for each level of the UNet.
|
||||
:param conv_resample: if True, use learned convolutions for upsampling and
|
||||
@ -289,7 +285,6 @@ class UNetModel(nn.Module):
|
||||
model_channels,
|
||||
out_channels,
|
||||
num_res_blocks,
|
||||
attention_resolutions,
|
||||
dropout=0,
|
||||
channel_mult=(1, 2, 4, 8),
|
||||
conv_resample=True,
|
||||
@ -314,6 +309,7 @@ class UNetModel(nn.Module):
|
||||
use_linear_in_transformer=False,
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
transformer_depth_output=None,
|
||||
device=None,
|
||||
operations=comfy.ops,
|
||||
):
|
||||
@ -341,10 +337,7 @@ class UNetModel(nn.Module):
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
if isinstance(transformer_depth, int):
|
||||
transformer_depth = len(channel_mult) * [transformer_depth]
|
||||
if transformer_depth_middle is None:
|
||||
transformer_depth_middle = transformer_depth[-1]
|
||||
|
||||
if isinstance(num_res_blocks, int):
|
||||
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
else:
|
||||
@ -352,18 +345,16 @@ class UNetModel(nn.Module):
|
||||
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
||||
"as a list/tuple (per-level) with the same length as channel_mult")
|
||||
self.num_res_blocks = num_res_blocks
|
||||
|
||||
if disable_self_attentions is not None:
|
||||
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
||||
assert len(disable_self_attentions) == len(channel_mult)
|
||||
if num_attention_blocks is not None:
|
||||
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
||||
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
||||
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
||||
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
||||
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
||||
f"attention will still not be set.")
|
||||
|
||||
self.attention_resolutions = attention_resolutions
|
||||
transformer_depth = transformer_depth[:]
|
||||
transformer_depth_output = transformer_depth_output[:]
|
||||
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
@ -428,7 +419,8 @@ class UNetModel(nn.Module):
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
if ds in attention_resolutions:
|
||||
num_transformers = transformer_depth.pop(0)
|
||||
if num_transformers > 0:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
@ -444,7 +436,7 @@ class UNetModel(nn.Module):
|
||||
|
||||
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
||||
layers.append(SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
|
||||
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
@ -488,7 +480,7 @@ class UNetModel(nn.Module):
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
mid_block = [
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
@ -499,8 +491,9 @@ class UNetModel(nn.Module):
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
),
|
||||
SpatialTransformer( # always uses a self-attn
|
||||
)]
|
||||
if transformer_depth_middle >= 0:
|
||||
mid_block += [SpatialTransformer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
||||
@ -515,8 +508,8 @@ class UNetModel(nn.Module):
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
),
|
||||
)
|
||||
)]
|
||||
self.middle_block = TimestepEmbedSequential(*mid_block)
|
||||
self._feature_size += ch
|
||||
|
||||
self.output_blocks = nn.ModuleList([])
|
||||
@ -538,7 +531,8 @@ class UNetModel(nn.Module):
|
||||
)
|
||||
]
|
||||
ch = model_channels * mult
|
||||
if ds in attention_resolutions:
|
||||
num_transformers = transformer_depth_output.pop()
|
||||
if num_transformers > 0:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
@ -555,7 +549,7 @@ class UNetModel(nn.Module):
|
||||
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
||||
layers.append(
|
||||
SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
|
||||
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
|
@ -14,6 +14,19 @@ def count_blocks(state_dict_keys, prefix_string):
|
||||
count += 1
|
||||
return count
|
||||
|
||||
def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
|
||||
context_dim = None
|
||||
use_linear_in_transformer = False
|
||||
|
||||
transformer_prefix = prefix + "1.transformer_blocks."
|
||||
transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
|
||||
if len(transformer_keys) > 0:
|
||||
last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
|
||||
context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
|
||||
use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
|
||||
return last_transformer_depth, context_dim, use_linear_in_transformer
|
||||
return None
|
||||
|
||||
def detect_unet_config(state_dict, key_prefix, dtype):
|
||||
state_dict_keys = list(state_dict.keys())
|
||||
|
||||
@ -40,6 +53,7 @@ def detect_unet_config(state_dict, key_prefix, dtype):
|
||||
channel_mult = []
|
||||
attention_resolutions = []
|
||||
transformer_depth = []
|
||||
transformer_depth_output = []
|
||||
context_dim = None
|
||||
use_linear_in_transformer = False
|
||||
|
||||
@ -48,60 +62,67 @@ def detect_unet_config(state_dict, key_prefix, dtype):
|
||||
count = 0
|
||||
|
||||
last_res_blocks = 0
|
||||
last_transformer_depth = 0
|
||||
last_channel_mult = 0
|
||||
|
||||
while True:
|
||||
input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.')
|
||||
for count in range(input_block_count):
|
||||
prefix = '{}input_blocks.{}.'.format(key_prefix, count)
|
||||
prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1)
|
||||
|
||||
block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys)))
|
||||
if len(block_keys) == 0:
|
||||
break
|
||||
|
||||
block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys)))
|
||||
|
||||
if "{}0.op.weight".format(prefix) in block_keys: #new layer
|
||||
if last_transformer_depth > 0:
|
||||
attention_resolutions.append(current_res)
|
||||
transformer_depth.append(last_transformer_depth)
|
||||
num_res_blocks.append(last_res_blocks)
|
||||
channel_mult.append(last_channel_mult)
|
||||
|
||||
current_res *= 2
|
||||
last_res_blocks = 0
|
||||
last_transformer_depth = 0
|
||||
last_channel_mult = 0
|
||||
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
|
||||
if out is not None:
|
||||
transformer_depth_output.append(out[0])
|
||||
else:
|
||||
transformer_depth_output.append(0)
|
||||
else:
|
||||
res_block_prefix = "{}0.in_layers.0.weight".format(prefix)
|
||||
if res_block_prefix in block_keys:
|
||||
last_res_blocks += 1
|
||||
last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels
|
||||
|
||||
transformer_prefix = prefix + "1.transformer_blocks."
|
||||
transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
|
||||
if len(transformer_keys) > 0:
|
||||
last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
|
||||
out = calculate_transformer_depth(prefix, state_dict_keys, state_dict)
|
||||
if out is not None:
|
||||
transformer_depth.append(out[0])
|
||||
if context_dim is None:
|
||||
context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
|
||||
use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
|
||||
context_dim = out[1]
|
||||
use_linear_in_transformer = out[2]
|
||||
else:
|
||||
transformer_depth.append(0)
|
||||
|
||||
res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output)
|
||||
if res_block_prefix in block_keys_output:
|
||||
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
|
||||
if out is not None:
|
||||
transformer_depth_output.append(out[0])
|
||||
else:
|
||||
transformer_depth_output.append(0)
|
||||
|
||||
count += 1
|
||||
|
||||
if last_transformer_depth > 0:
|
||||
attention_resolutions.append(current_res)
|
||||
transformer_depth.append(last_transformer_depth)
|
||||
num_res_blocks.append(last_res_blocks)
|
||||
channel_mult.append(last_channel_mult)
|
||||
if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys:
|
||||
transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
|
||||
|
||||
if len(set(num_res_blocks)) == 1:
|
||||
num_res_blocks = num_res_blocks[0]
|
||||
|
||||
if len(set(transformer_depth)) == 1:
|
||||
transformer_depth = transformer_depth[0]
|
||||
else:
|
||||
transformer_depth_middle = -1
|
||||
|
||||
unet_config["in_channels"] = in_channels
|
||||
unet_config["model_channels"] = model_channels
|
||||
unet_config["num_res_blocks"] = num_res_blocks
|
||||
unet_config["attention_resolutions"] = attention_resolutions
|
||||
unet_config["transformer_depth"] = transformer_depth
|
||||
unet_config["transformer_depth_output"] = transformer_depth_output
|
||||
unet_config["channel_mult"] = channel_mult
|
||||
unet_config["transformer_depth_middle"] = transformer_depth_middle
|
||||
unet_config['use_linear_in_transformer'] = use_linear_in_transformer
|
||||
@ -124,6 +145,45 @@ def model_config_from_unet(state_dict, unet_key_prefix, dtype, use_base_if_no_ma
|
||||
else:
|
||||
return model_config
|
||||
|
||||
def convert_config(unet_config):
|
||||
new_config = unet_config.copy()
|
||||
num_res_blocks = new_config.get("num_res_blocks", None)
|
||||
channel_mult = new_config.get("channel_mult", None)
|
||||
|
||||
if isinstance(num_res_blocks, int):
|
||||
num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
|
||||
if "attention_resolutions" in new_config:
|
||||
attention_resolutions = new_config.pop("attention_resolutions")
|
||||
transformer_depth = new_config.get("transformer_depth", None)
|
||||
transformer_depth_middle = new_config.get("transformer_depth_middle", None)
|
||||
|
||||
if isinstance(transformer_depth, int):
|
||||
transformer_depth = len(channel_mult) * [transformer_depth]
|
||||
if transformer_depth_middle is None:
|
||||
transformer_depth_middle = transformer_depth[-1]
|
||||
t_in = []
|
||||
t_out = []
|
||||
s = 1
|
||||
for i in range(len(num_res_blocks)):
|
||||
res = num_res_blocks[i]
|
||||
d = 0
|
||||
if s in attention_resolutions:
|
||||
d = transformer_depth[i]
|
||||
|
||||
t_in += [d] * res
|
||||
t_out += [d] * (res + 1)
|
||||
s *= 2
|
||||
transformer_depth = t_in
|
||||
transformer_depth_output = t_out
|
||||
new_config["transformer_depth"] = t_in
|
||||
new_config["transformer_depth_output"] = t_out
|
||||
new_config["transformer_depth_middle"] = transformer_depth_middle
|
||||
|
||||
new_config["num_res_blocks"] = num_res_blocks
|
||||
return new_config
|
||||
|
||||
|
||||
def unet_config_from_diffusers_unet(state_dict, dtype):
|
||||
match = {}
|
||||
attention_resolutions = []
|
||||
@ -200,7 +260,7 @@ def unet_config_from_diffusers_unet(state_dict, dtype):
|
||||
matches = False
|
||||
break
|
||||
if matches:
|
||||
return unet_config
|
||||
return convert_config(unet_config)
|
||||
return None
|
||||
|
||||
def model_config_from_diffusers_unet(state_dict, dtype):
|
||||
|
@ -360,7 +360,7 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
||||
|
||||
from . import latent_formats
|
||||
model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)
|
||||
model_config.unet_config = unet_config
|
||||
model_config.unet_config = model_detection.convert_config(unet_config)
|
||||
|
||||
if config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
|
||||
model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], model_type=model_type)
|
||||
|
@ -104,7 +104,7 @@ class SDXLRefiner(supported_models_base.BASE):
|
||||
"use_linear_in_transformer": True,
|
||||
"context_dim": 1280,
|
||||
"adm_in_channels": 2560,
|
||||
"transformer_depth": [0, 4, 4, 0],
|
||||
"transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0],
|
||||
}
|
||||
|
||||
latent_format = latent_formats.SDXL
|
||||
@ -139,7 +139,7 @@ class SDXL(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"transformer_depth": [0, 2, 10],
|
||||
"transformer_depth": [0, 0, 2, 2, 10, 10],
|
||||
"context_dim": 2048,
|
||||
"adm_in_channels": 2816
|
||||
}
|
||||
@ -165,6 +165,7 @@ class SDXL(supported_models_base.BASE):
|
||||
replace_prefix["conditioner.embedders.0.transformer.text_model"] = "cond_stage_model.clip_l.transformer.text_model"
|
||||
state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.1.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
|
||||
keys_to_replace["conditioner.embedders.1.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
|
||||
keys_to_replace["conditioner.embedders.1.model.text_projection.weight"] = "cond_stage_model.clip_g.text_projection"
|
||||
keys_to_replace["conditioner.embedders.1.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale"
|
||||
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
@ -189,5 +190,14 @@ class SDXL(supported_models_base.BASE):
|
||||
def clip_target(self):
|
||||
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)
|
||||
|
||||
class SSD1B(SDXL):
|
||||
unet_config = {
|
||||
"model_channels": 320,
|
||||
"use_linear_in_transformer": True,
|
||||
"transformer_depth": [0, 0, 2, 2, 4, 4],
|
||||
"context_dim": 2048,
|
||||
"adm_in_channels": 2816
|
||||
}
|
||||
|
||||
models = [SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL]
|
||||
|
||||
models = [SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL, SSD1B]
|
||||
|
@ -170,25 +170,12 @@ UNET_MAP_BASIC = {
|
||||
|
||||
def unet_to_diffusers(unet_config):
|
||||
num_res_blocks = unet_config["num_res_blocks"]
|
||||
attention_resolutions = unet_config["attention_resolutions"]
|
||||
channel_mult = unet_config["channel_mult"]
|
||||
transformer_depth = unet_config["transformer_depth"]
|
||||
transformer_depth = unet_config["transformer_depth"][:]
|
||||
transformer_depth_output = unet_config["transformer_depth_output"][:]
|
||||
num_blocks = len(channel_mult)
|
||||
if isinstance(num_res_blocks, int):
|
||||
num_res_blocks = [num_res_blocks] * num_blocks
|
||||
if isinstance(transformer_depth, int):
|
||||
transformer_depth = [transformer_depth] * num_blocks
|
||||
|
||||
transformers_per_layer = []
|
||||
res = 1
|
||||
for i in range(num_blocks):
|
||||
transformers = 0
|
||||
if res in attention_resolutions:
|
||||
transformers = transformer_depth[i]
|
||||
transformers_per_layer.append(transformers)
|
||||
res *= 2
|
||||
|
||||
transformers_mid = unet_config.get("transformer_depth_middle", transformer_depth[-1])
|
||||
transformers_mid = unet_config.get("transformer_depth_middle", None)
|
||||
|
||||
diffusers_unet_map = {}
|
||||
for x in range(num_blocks):
|
||||
@ -196,10 +183,11 @@ def unet_to_diffusers(unet_config):
|
||||
for i in range(num_res_blocks[x]):
|
||||
for b in UNET_MAP_RESNET:
|
||||
diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
|
||||
if transformers_per_layer[x] > 0:
|
||||
num_transformers = transformer_depth.pop(0)
|
||||
if num_transformers > 0:
|
||||
for b in UNET_MAP_ATTENTIONS:
|
||||
diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b)
|
||||
for t in range(transformers_per_layer[x]):
|
||||
for t in range(num_transformers):
|
||||
for b in TRANSFORMER_BLOCKS:
|
||||
diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
|
||||
n += 1
|
||||
@ -218,7 +206,6 @@ def unet_to_diffusers(unet_config):
|
||||
diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)
|
||||
|
||||
num_res_blocks = list(reversed(num_res_blocks))
|
||||
transformers_per_layer = list(reversed(transformers_per_layer))
|
||||
for x in range(num_blocks):
|
||||
n = (num_res_blocks[x] + 1) * x
|
||||
l = num_res_blocks[x] + 1
|
||||
@ -227,11 +214,12 @@ def unet_to_diffusers(unet_config):
|
||||
for b in UNET_MAP_RESNET:
|
||||
diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b)
|
||||
c += 1
|
||||
if transformers_per_layer[x] > 0:
|
||||
num_transformers = transformer_depth_output.pop()
|
||||
if num_transformers > 0:
|
||||
c += 1
|
||||
for b in UNET_MAP_ATTENTIONS:
|
||||
diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b)
|
||||
for t in range(transformers_per_layer[x]):
|
||||
for t in range(num_transformers):
|
||||
for b in TRANSFORMER_BLOCKS:
|
||||
diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
|
||||
if i == l - 1:
|
||||
|
Loading…
Reference in New Issue
Block a user