Merge branch 'comfyanonymous:master' into sa_solver

This commit is contained in:
chaObserv 2024-10-30 00:41:46 +08:00 committed by GitHub
commit 70ff03429c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
70 changed files with 70606 additions and 71246 deletions

View File

@ -17,12 +17,12 @@ on:
description: 'Python minor version'
required: true
type: string
default: "11"
default: "12"
python_patch:
description: 'Python patch version'
required: true
type: string
default: "9"
default: "7"
jobs:

View File

@ -12,7 +12,7 @@ on:
description: 'extra dependencies'
required: false
type: string
default: "\"numpy<2\""
default: ""
cu:
description: 'cuda version'
required: true
@ -23,13 +23,13 @@ on:
description: 'python minor version'
required: true
type: string
default: "11"
default: "12"
python_patch:
description: 'python patch version'
required: true
type: string
default: "9"
default: "7"
# push:
# branches:
# - master

View File

@ -13,13 +13,13 @@ on:
description: 'python minor version'
required: true
type: string
default: "11"
default: "12"
python_patch:
description: 'python patch version'
required: true
type: string
default: "9"
default: "7"
# push:
# branches:
# - master

View File

@ -127,6 +127,8 @@ To run it on services like paperspace, kaggle or colab you can use my [Jupyter N
## Manual Install (Windows, Linux)
Note that some dependencies do not yet support python 3.13 so using 3.12 is recommended.
Git clone this repo.
Put your SD checkpoints (the huge ckpt/safetensors files) in: models/checkpoints

View File

@ -151,6 +151,15 @@ class FrontendManager:
return cls.DEFAULT_FRONTEND_PATH
repo_owner, repo_name, version = cls.parse_version_string(version_string)
if version.startswith("v"):
expected_path = str(Path(cls.CUSTOM_FRONTENDS_ROOT) / f"{repo_owner}_{repo_name}" / version.lstrip("v"))
if os.path.exists(expected_path):
logging.info(f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}")
return expected_path
logging.info(f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub...")
provider = provider or FrontEndProvider(repo_owner, repo_name)
release = provider.get_release(version)

View File

@ -60,7 +60,7 @@ class StrengthType(Enum):
LINEAR_UP = 2
class ControlBase:
def __init__(self, device=None):
def __init__(self):
self.cond_hint_original = None
self.cond_hint = None
self.strength = 1.0
@ -72,10 +72,6 @@ class ControlBase:
self.compression_ratio = 8
self.upscale_algorithm = 'nearest-exact'
self.extra_args = {}
if device is None:
device = comfy.model_management.get_torch_device()
self.device = device
self.previous_controlnet = None
self.extra_conds = []
self.strength_type = StrengthType.CONSTANT
@ -185,8 +181,8 @@ class ControlBase:
class ControlNet(ControlBase):
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, device=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False):
super().__init__(device)
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False):
super().__init__()
self.control_model = control_model
self.load_device = load_device
if control_model is not None:
@ -242,7 +238,7 @@ class ControlNet(ControlBase):
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
self.cond_hint = self.cond_hint.to(device=self.device, dtype=dtype)
self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
@ -341,8 +337,8 @@ class ControlLoraOps:
class ControlLora(ControlNet):
def __init__(self, control_weights, global_average_pooling=False, device=None, model_options={}): #TODO? model_options
ControlBase.__init__(self, device)
def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options
ControlBase.__init__(self)
self.control_weights = control_weights
self.global_average_pooling = global_average_pooling
self.extra_conds += ["y"]
@ -662,12 +658,15 @@ def load_controlnet(ckpt_path, model=None, model_options={}):
class T2IAdapter(ControlBase):
def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None):
super().__init__(device)
super().__init__()
self.t2i_model = t2i_model
self.channels_in = channels_in
self.control_input = None
self.compression_ratio = compression_ratio
self.upscale_algorithm = upscale_algorithm
if device is None:
device = comfy.model_management.get_torch_device()
self.device = device
def scale_image_to(self, width, height):
unshuffle_amount = self.t2i_model.unshuffle_amount

View File

@ -41,6 +41,8 @@ def manual_stochastic_round_to_float8(x, dtype, generator=None):
(2.0 ** (-EXPONENT_BIAS + 1)) * abs_x
)
inf = torch.finfo(dtype)
torch.clamp(sign, min=inf.min, max=inf.max, out=sign)
return sign

View File

@ -166,6 +166,8 @@ def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None,
@torch.no_grad()
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
return sample_euler_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
"""Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
@ -183,6 +185,29 @@ def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, dis
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
return x
@torch.no_grad()
def sample_euler_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1., noise_sampler=None):
"""Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
# sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
sigma_down = sigmas[i+1] * downstep_ratio
alpha_ip1 = 1 - sigmas[i+1]
alpha_down = 1 - sigma_down
renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
# Euler method
sigma_down_i_ratio = sigma_down / sigmas[i]
x = sigma_down_i_ratio * x + (1 - sigma_down_i_ratio) * denoised
if sigmas[i + 1] > 0 and eta > 0:
x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
return x
@torch.no_grad()
def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
@ -1192,7 +1217,6 @@ def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disabl
d = to_d(x, sigma_hat, temp[0])
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = denoised + d * sigmas[i + 1]
return x
@ -1219,7 +1243,6 @@ def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=No
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
d = to_d(x, sigmas[i], temp[0])
# Euler method
dt = sigma_down - sigmas[i]
x = denoised + d * sigma_down
if sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
@ -1250,7 +1273,6 @@ def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback
if sigma_down == 0:
# Euler method
d = to_d(x, sigmas[i], temp[0])
dt = sigma_down - sigmas[i]
x = denoised + d * sigma_down
else:
# DPM-Solver++(2S)
@ -1298,4 +1320,4 @@ def sample_dpmpp_2m_cfg_pp(model, x, sigmas, extra_args=None, callback=None, dis
denoised_mix = -torch.exp(-h) * uncond_denoised - torch.expm1(-h) * (1 / (2 * r)) * (denoised - old_uncond_denoised)
x = denoised + denoised_mix + torch.exp(-h) * x
old_uncond_denoised = uncond_denoised
return x
return x

View File

@ -175,3 +175,30 @@ class Flux(SD3):
def process_out(self, latent):
return (latent / self.scale_factor) + self.shift_factor
class Mochi(LatentFormat):
latent_channels = 12
def __init__(self):
self.scale_factor = 1.0
self.latents_mean = torch.tensor([-0.06730895953510081, -0.038011381506090416, -0.07477820912866141,
-0.05565264470995561, 0.012767231469026969, -0.04703542746246419,
0.043896967884726704, -0.09346305707025976, -0.09918314763016893,
-0.008729793427399178, -0.011931556316503654, -0.0321993391887285]).view(1, self.latent_channels, 1, 1, 1)
self.latents_std = torch.tensor([0.9263795028493863, 0.9248894543193766, 0.9393059390890617,
0.959253732819592, 0.8244560132752793, 0.917259975397747,
0.9294154431013696, 1.3720942357788521, 0.881393668867029,
0.9168315692124348, 0.9185249279345552, 0.9274757570805041]).view(1, self.latent_channels, 1, 1, 1)
self.latent_rgb_factors = None #TODO
self.taesd_decoder_name = None #TODO
def process_in(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return (latent - latents_mean) * self.scale_factor / latents_std
def process_out(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return latent * latents_std / self.scale_factor + latents_mean

View File

@ -13,9 +13,15 @@ try:
except:
rms_norm_torch = None
def rms_norm(x, weight, eps=1e-6):
def rms_norm(x, weight=None, eps=1e-6):
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
return rms_norm_torch(x, weight.shape, weight=comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
if weight is None:
return rms_norm_torch(x, (x.shape[-1],), eps=eps)
else:
return rms_norm_torch(x, weight.shape, weight=comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
else:
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
return (x * rrms) * comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device)
r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
if weight is None:
return r
else:
return r * comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device)

View File

@ -0,0 +1,541 @@
#original code from https://github.com/genmoai/models under apache 2.0 license
#adapted to ComfyUI
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
# from flash_attn import flash_attn_varlen_qkvpacked_func
from comfy.ldm.modules.attention import optimized_attention
from .layers import (
FeedForward,
PatchEmbed,
RMSNorm,
TimestepEmbedder,
)
from .rope_mixed import (
compute_mixed_rotation,
create_position_matrix,
)
from .temporal_rope import apply_rotary_emb_qk_real
from .utils import (
AttentionPool,
modulate,
)
import comfy.ldm.common_dit
import comfy.ops
def modulated_rmsnorm(x, scale, eps=1e-6):
# Normalize and modulate
x_normed = comfy.ldm.common_dit.rms_norm(x, eps=eps)
x_modulated = x_normed * (1 + scale.unsqueeze(1))
return x_modulated
def residual_tanh_gated_rmsnorm(x, x_res, gate, eps=1e-6):
# Apply tanh to gate
tanh_gate = torch.tanh(gate).unsqueeze(1)
# Normalize and apply gated scaling
x_normed = comfy.ldm.common_dit.rms_norm(x_res, eps=eps) * tanh_gate
# Apply residual connection
output = x + x_normed
return output
class AsymmetricAttention(nn.Module):
def __init__(
self,
dim_x: int,
dim_y: int,
num_heads: int = 8,
qkv_bias: bool = True,
qk_norm: bool = False,
attn_drop: float = 0.0,
update_y: bool = True,
out_bias: bool = True,
attend_to_padding: bool = False,
softmax_scale: Optional[float] = None,
device: Optional[torch.device] = None,
dtype=None,
operations=None,
):
super().__init__()
self.dim_x = dim_x
self.dim_y = dim_y
self.num_heads = num_heads
self.head_dim = dim_x // num_heads
self.attn_drop = attn_drop
self.update_y = update_y
self.attend_to_padding = attend_to_padding
self.softmax_scale = softmax_scale
if dim_x % num_heads != 0:
raise ValueError(
f"dim_x={dim_x} should be divisible by num_heads={num_heads}"
)
# Input layers.
self.qkv_bias = qkv_bias
self.qkv_x = operations.Linear(dim_x, 3 * dim_x, bias=qkv_bias, device=device, dtype=dtype)
# Project text features to match visual features (dim_y -> dim_x)
self.qkv_y = operations.Linear(dim_y, 3 * dim_x, bias=qkv_bias, device=device, dtype=dtype)
# Query and key normalization for stability.
assert qk_norm
self.q_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
self.k_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
self.q_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
self.k_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
# Output layers. y features go back down from dim_x -> dim_y.
self.proj_x = operations.Linear(dim_x, dim_x, bias=out_bias, device=device, dtype=dtype)
self.proj_y = (
operations.Linear(dim_x, dim_y, bias=out_bias, device=device, dtype=dtype)
if update_y
else nn.Identity()
)
def forward(
self,
x: torch.Tensor, # (B, N, dim_x)
y: torch.Tensor, # (B, L, dim_y)
scale_x: torch.Tensor, # (B, dim_x), modulation for pre-RMSNorm.
scale_y: torch.Tensor, # (B, dim_y), modulation for pre-RMSNorm.
crop_y,
**rope_rotation,
) -> Tuple[torch.Tensor, torch.Tensor]:
rope_cos = rope_rotation.get("rope_cos")
rope_sin = rope_rotation.get("rope_sin")
# Pre-norm for visual features
x = modulated_rmsnorm(x, scale_x) # (B, M, dim_x) where M = N / cp_group_size
# Process visual features
# qkv_x = self.qkv_x(x) # (B, M, 3 * dim_x)
# assert qkv_x.dtype == torch.bfloat16
# qkv_x = all_to_all_collect_tokens(
# qkv_x, self.num_heads
# ) # (3, B, N, local_h, head_dim)
# Process text features
y = modulated_rmsnorm(y, scale_y) # (B, L, dim_y)
q_y, k_y, v_y = self.qkv_y(y).view(y.shape[0], y.shape[1], 3, self.num_heads, -1).unbind(2) # (B, N, local_h, head_dim)
q_y = self.q_norm_y(q_y)
k_y = self.k_norm_y(k_y)
# Split qkv_x into q, k, v
q_x, k_x, v_x = self.qkv_x(x).view(x.shape[0], x.shape[1], 3, self.num_heads, -1).unbind(2) # (B, N, local_h, head_dim)
q_x = self.q_norm_x(q_x)
q_x = apply_rotary_emb_qk_real(q_x, rope_cos, rope_sin)
k_x = self.k_norm_x(k_x)
k_x = apply_rotary_emb_qk_real(k_x, rope_cos, rope_sin)
q = torch.cat([q_x, q_y[:, :crop_y]], dim=1).transpose(1, 2)
k = torch.cat([k_x, k_y[:, :crop_y]], dim=1).transpose(1, 2)
v = torch.cat([v_x, v_y[:, :crop_y]], dim=1).transpose(1, 2)
xy = optimized_attention(q,
k,
v, self.num_heads, skip_reshape=True)
x, y = torch.tensor_split(xy, (q_x.shape[1],), dim=1)
x = self.proj_x(x)
o = torch.zeros(y.shape[0], q_y.shape[1], y.shape[-1], device=y.device, dtype=y.dtype)
o[:, :y.shape[1]] = y
y = self.proj_y(o)
# print("ox", x)
# print("oy", y)
return x, y
class AsymmetricJointBlock(nn.Module):
def __init__(
self,
hidden_size_x: int,
hidden_size_y: int,
num_heads: int,
*,
mlp_ratio_x: float = 8.0, # Ratio of hidden size to d_model for MLP for visual tokens.
mlp_ratio_y: float = 4.0, # Ratio of hidden size to d_model for MLP for text tokens.
update_y: bool = True, # Whether to update text tokens in this block.
device: Optional[torch.device] = None,
dtype=None,
operations=None,
**block_kwargs,
):
super().__init__()
self.update_y = update_y
self.hidden_size_x = hidden_size_x
self.hidden_size_y = hidden_size_y
self.mod_x = operations.Linear(hidden_size_x, 4 * hidden_size_x, device=device, dtype=dtype)
if self.update_y:
self.mod_y = operations.Linear(hidden_size_x, 4 * hidden_size_y, device=device, dtype=dtype)
else:
self.mod_y = operations.Linear(hidden_size_x, hidden_size_y, device=device, dtype=dtype)
# Self-attention:
self.attn = AsymmetricAttention(
hidden_size_x,
hidden_size_y,
num_heads=num_heads,
update_y=update_y,
device=device,
dtype=dtype,
operations=operations,
**block_kwargs,
)
# MLP.
mlp_hidden_dim_x = int(hidden_size_x * mlp_ratio_x)
assert mlp_hidden_dim_x == int(1536 * 8)
self.mlp_x = FeedForward(
in_features=hidden_size_x,
hidden_size=mlp_hidden_dim_x,
multiple_of=256,
ffn_dim_multiplier=None,
device=device,
dtype=dtype,
operations=operations,
)
# MLP for text not needed in last block.
if self.update_y:
mlp_hidden_dim_y = int(hidden_size_y * mlp_ratio_y)
self.mlp_y = FeedForward(
in_features=hidden_size_y,
hidden_size=mlp_hidden_dim_y,
multiple_of=256,
ffn_dim_multiplier=None,
device=device,
dtype=dtype,
operations=operations,
)
def forward(
self,
x: torch.Tensor,
c: torch.Tensor,
y: torch.Tensor,
**attn_kwargs,
):
"""Forward pass of a block.
Args:
x: (B, N, dim) tensor of visual tokens
c: (B, dim) tensor of conditioned features
y: (B, L, dim) tensor of text tokens
num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens
Returns:
x: (B, N, dim) tensor of visual tokens after block
y: (B, L, dim) tensor of text tokens after block
"""
N = x.size(1)
c = F.silu(c)
mod_x = self.mod_x(c)
scale_msa_x, gate_msa_x, scale_mlp_x, gate_mlp_x = mod_x.chunk(4, dim=1)
mod_y = self.mod_y(c)
if self.update_y:
scale_msa_y, gate_msa_y, scale_mlp_y, gate_mlp_y = mod_y.chunk(4, dim=1)
else:
scale_msa_y = mod_y
# Self-attention block.
x_attn, y_attn = self.attn(
x,
y,
scale_x=scale_msa_x,
scale_y=scale_msa_y,
**attn_kwargs,
)
assert x_attn.size(1) == N
x = residual_tanh_gated_rmsnorm(x, x_attn, gate_msa_x)
if self.update_y:
y = residual_tanh_gated_rmsnorm(y, y_attn, gate_msa_y)
# MLP block.
x = self.ff_block_x(x, scale_mlp_x, gate_mlp_x)
if self.update_y:
y = self.ff_block_y(y, scale_mlp_y, gate_mlp_y)
return x, y
def ff_block_x(self, x, scale_x, gate_x):
x_mod = modulated_rmsnorm(x, scale_x)
x_res = self.mlp_x(x_mod)
x = residual_tanh_gated_rmsnorm(x, x_res, gate_x) # Sandwich norm
return x
def ff_block_y(self, y, scale_y, gate_y):
y_mod = modulated_rmsnorm(y, scale_y)
y_res = self.mlp_y(y_mod)
y = residual_tanh_gated_rmsnorm(y, y_res, gate_y) # Sandwich norm
return y
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(
self,
hidden_size,
patch_size,
out_channels,
device: Optional[torch.device] = None,
dtype=None,
operations=None,
):
super().__init__()
self.norm_final = operations.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype
)
self.mod = operations.Linear(hidden_size, 2 * hidden_size, device=device, dtype=dtype)
self.linear = operations.Linear(
hidden_size, patch_size * patch_size * out_channels, device=device, dtype=dtype
)
def forward(self, x, c):
c = F.silu(c)
shift, scale = self.mod(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class AsymmDiTJoint(nn.Module):
"""
Diffusion model with a Transformer backbone.
Ingests text embeddings instead of a label.
"""
def __init__(
self,
*,
patch_size=2,
in_channels=4,
hidden_size_x=1152,
hidden_size_y=1152,
depth=48,
num_heads=16,
mlp_ratio_x=8.0,
mlp_ratio_y=4.0,
use_t5: bool = False,
t5_feat_dim: int = 4096,
t5_token_length: int = 256,
learn_sigma=True,
patch_embed_bias: bool = True,
timestep_mlp_bias: bool = True,
attend_to_padding: bool = False,
timestep_scale: Optional[float] = None,
use_extended_posenc: bool = False,
posenc_preserve_area: bool = False,
rope_theta: float = 10000.0,
image_model=None,
device: Optional[torch.device] = None,
dtype=None,
operations=None,
**block_kwargs,
):
super().__init__()
self.dtype = dtype
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.hidden_size_x = hidden_size_x
self.hidden_size_y = hidden_size_y
self.head_dim = (
hidden_size_x // num_heads
) # Head dimension and count is determined by visual.
self.attend_to_padding = attend_to_padding
self.use_extended_posenc = use_extended_posenc
self.posenc_preserve_area = posenc_preserve_area
self.use_t5 = use_t5
self.t5_token_length = t5_token_length
self.t5_feat_dim = t5_feat_dim
self.rope_theta = (
rope_theta # Scaling factor for frequency computation for temporal RoPE.
)
self.x_embedder = PatchEmbed(
patch_size=patch_size,
in_chans=in_channels,
embed_dim=hidden_size_x,
bias=patch_embed_bias,
dtype=dtype,
device=device,
operations=operations
)
# Conditionings
# Timestep
self.t_embedder = TimestepEmbedder(
hidden_size_x, bias=timestep_mlp_bias, timestep_scale=timestep_scale, dtype=dtype, device=device, operations=operations
)
if self.use_t5:
# Caption Pooling (T5)
self.t5_y_embedder = AttentionPool(
t5_feat_dim, num_heads=8, output_dim=hidden_size_x, dtype=dtype, device=device, operations=operations
)
# Dense Embedding Projection (T5)
self.t5_yproj = operations.Linear(
t5_feat_dim, hidden_size_y, bias=True, dtype=dtype, device=device
)
# Initialize pos_frequencies as an empty parameter.
self.pos_frequencies = nn.Parameter(
torch.empty(3, self.num_heads, self.head_dim // 2, dtype=dtype, device=device)
)
assert not self.attend_to_padding
# for depth 48:
# b = 0: AsymmetricJointBlock, update_y=True
# b = 1: AsymmetricJointBlock, update_y=True
# ...
# b = 46: AsymmetricJointBlock, update_y=True
# b = 47: AsymmetricJointBlock, update_y=False. No need to update text features.
blocks = []
for b in range(depth):
# Joint multi-modal block
update_y = b < depth - 1
block = AsymmetricJointBlock(
hidden_size_x,
hidden_size_y,
num_heads,
mlp_ratio_x=mlp_ratio_x,
mlp_ratio_y=mlp_ratio_y,
update_y=update_y,
attend_to_padding=attend_to_padding,
device=device,
dtype=dtype,
operations=operations,
**block_kwargs,
)
blocks.append(block)
self.blocks = nn.ModuleList(blocks)
self.final_layer = FinalLayer(
hidden_size_x, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations
)
def embed_x(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x: (B, C=12, T, H, W) tensor of visual tokens
Returns:
x: (B, C=3072, N) tensor of visual tokens with positional embedding.
"""
return self.x_embedder(x) # Convert BcTHW to BCN
def prepare(
self,
x: torch.Tensor,
sigma: torch.Tensor,
t5_feat: torch.Tensor,
t5_mask: torch.Tensor,
):
"""Prepare input and conditioning embeddings."""
# Visual patch embeddings with positional encoding.
T, H, W = x.shape[-3:]
pH, pW = H // self.patch_size, W // self.patch_size
x = self.embed_x(x) # (B, N, D), where N = T * H * W / patch_size ** 2
assert x.ndim == 3
B = x.size(0)
pH, pW = H // self.patch_size, W // self.patch_size
N = T * pH * pW
assert x.size(1) == N
pos = create_position_matrix(
T, pH=pH, pW=pW, device=x.device, dtype=torch.float32
) # (N, 3)
rope_cos, rope_sin = compute_mixed_rotation(
freqs=comfy.ops.cast_to(self.pos_frequencies, dtype=x.dtype, device=x.device), pos=pos
) # Each are (N, num_heads, dim // 2)
c_t = self.t_embedder(1 - sigma, out_dtype=x.dtype) # (B, D)
t5_y_pool = self.t5_y_embedder(t5_feat, t5_mask) # (B, D)
c = c_t + t5_y_pool
y_feat = self.t5_yproj(t5_feat) # (B, L, t5_feat_dim) --> (B, L, D)
return x, c, y_feat, rope_cos, rope_sin
def forward(
self,
x: torch.Tensor,
timestep: torch.Tensor,
context: List[torch.Tensor],
attention_mask: List[torch.Tensor],
num_tokens=256,
packed_indices: Dict[str, torch.Tensor] = None,
rope_cos: torch.Tensor = None,
rope_sin: torch.Tensor = None,
control=None, **kwargs
):
y_feat = context
y_mask = attention_mask
sigma = timestep
"""Forward pass of DiT.
Args:
x: (B, C, T, H, W) tensor of spatial inputs (images or latent representations of images)
sigma: (B,) tensor of noise standard deviations
y_feat: List((B, L, y_feat_dim) tensor of caption token features. For SDXL text encoders: L=77, y_feat_dim=2048)
y_mask: List((B, L) boolean tensor indicating which tokens are not padding)
packed_indices: Dict with keys for Flash Attention. Result of compute_packed_indices.
"""
B, _, T, H, W = x.shape
x, c, y_feat, rope_cos, rope_sin = self.prepare(
x, sigma, y_feat, y_mask
)
del y_mask
for i, block in enumerate(self.blocks):
x, y_feat = block(
x,
c,
y_feat,
rope_cos=rope_cos,
rope_sin=rope_sin,
crop_y=num_tokens,
) # (B, M, D), (B, L, D)
del y_feat # Final layers don't use dense text features.
x = self.final_layer(x, c) # (B, M, patch_size ** 2 * out_channels)
x = rearrange(
x,
"B (T hp wp) (p1 p2 c) -> B c T (hp p1) (wp p2)",
T=T,
hp=H // self.patch_size,
wp=W // self.patch_size,
p1=self.patch_size,
p2=self.patch_size,
c=self.out_channels,
)
return -x

View File

@ -0,0 +1,164 @@
#original code from https://github.com/genmoai/models under apache 2.0 license
#adapted to ComfyUI
import collections.abc
import math
from itertools import repeat
from typing import Callable, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
import comfy.ldm.common_dit
# From PyTorch internals
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
return tuple(x)
return tuple(repeat(x, n))
return parse
to_2tuple = _ntuple(2)
class TimestepEmbedder(nn.Module):
def __init__(
self,
hidden_size: int,
frequency_embedding_size: int = 256,
*,
bias: bool = True,
timestep_scale: Optional[float] = None,
dtype=None,
device=None,
operations=None,
):
super().__init__()
self.mlp = nn.Sequential(
operations.Linear(frequency_embedding_size, hidden_size, bias=bias, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(hidden_size, hidden_size, bias=bias, dtype=dtype, device=device),
)
self.frequency_embedding_size = frequency_embedding_size
self.timestep_scale = timestep_scale
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
half = dim // 2
freqs = torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
freqs.mul_(-math.log(max_period) / half).exp_()
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
)
return embedding
def forward(self, t, out_dtype):
if self.timestep_scale is not None:
t = t * self.timestep_scale
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype=out_dtype)
t_emb = self.mlp(t_freq)
return t_emb
class FeedForward(nn.Module):
def __init__(
self,
in_features: int,
hidden_size: int,
multiple_of: int,
ffn_dim_multiplier: Optional[float],
device: Optional[torch.device] = None,
dtype=None,
operations=None,
):
super().__init__()
# keep parameter count and computation constant compared to standard FFN
hidden_size = int(2 * hidden_size / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_size = int(ffn_dim_multiplier * hidden_size)
hidden_size = multiple_of * ((hidden_size + multiple_of - 1) // multiple_of)
self.hidden_dim = hidden_size
self.w1 = operations.Linear(in_features, 2 * hidden_size, bias=False, device=device, dtype=dtype)
self.w2 = operations.Linear(hidden_size, in_features, bias=False, device=device, dtype=dtype)
def forward(self, x):
x, gate = self.w1(x).chunk(2, dim=-1)
x = self.w2(F.silu(x) * gate)
return x
class PatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 768,
norm_layer: Optional[Callable] = None,
flatten: bool = True,
bias: bool = True,
dynamic_img_pad: bool = False,
dtype=None,
device=None,
operations=None,
):
super().__init__()
self.patch_size = to_2tuple(patch_size)
self.flatten = flatten
self.dynamic_img_pad = dynamic_img_pad
self.proj = operations.Conv2d(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=patch_size,
bias=bias,
device=device,
dtype=dtype,
)
assert norm_layer is None
self.norm = (
norm_layer(embed_dim, device=device) if norm_layer else nn.Identity()
)
def forward(self, x):
B, _C, T, H, W = x.shape
if not self.dynamic_img_pad:
assert H % self.patch_size[0] == 0, f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})."
assert W % self.patch_size[1] == 0, f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})."
else:
pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]
pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]
x = F.pad(x, (0, pad_w, 0, pad_h))
x = rearrange(x, "B C T H W -> (B T) C H W", B=B, T=T)
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size, padding_mode='circular')
x = self.proj(x)
# Flatten temporal and spatial dimensions.
if not self.flatten:
raise NotImplementedError("Must flatten output.")
x = rearrange(x, "(B T) C H W -> B (T H W) C", B=B, T=T)
x = self.norm(x)
return x
class RMSNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.empty(hidden_size, device=device, dtype=dtype))
self.register_parameter("bias", None)
def forward(self, x):
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps)

View File

@ -0,0 +1,88 @@
#original code from https://github.com/genmoai/models under apache 2.0 license
# import functools
import math
import torch
def centers(start: float, stop, num, dtype=None, device=None):
"""linspace through bin centers.
Args:
start (float): Start of the range.
stop (float): End of the range.
num (int): Number of points.
dtype (torch.dtype): Data type of the points.
device (torch.device): Device of the points.
Returns:
centers (Tensor): Centers of the bins. Shape: (num,).
"""
edges = torch.linspace(start, stop, num + 1, dtype=dtype, device=device)
return (edges[:-1] + edges[1:]) / 2
# @functools.lru_cache(maxsize=1)
def create_position_matrix(
T: int,
pH: int,
pW: int,
device: torch.device,
dtype: torch.dtype,
*,
target_area: float = 36864,
):
"""
Args:
T: int - Temporal dimension
pH: int - Height dimension after patchify
pW: int - Width dimension after patchify
Returns:
pos: [T * pH * pW, 3] - position matrix
"""
# Create 1D tensors for each dimension
t = torch.arange(T, dtype=dtype)
# Positionally interpolate to area 36864.
# (3072x3072 frame with 16x16 patches = 192x192 latents).
# This automatically scales rope positions when the resolution changes.
# We use a large target area so the model is more sensitive
# to changes in the learned pos_frequencies matrix.
scale = math.sqrt(target_area / (pW * pH))
w = centers(-pW * scale / 2, pW * scale / 2, pW)
h = centers(-pH * scale / 2, pH * scale / 2, pH)
# Use meshgrid to create 3D grids
grid_t, grid_h, grid_w = torch.meshgrid(t, h, w, indexing="ij")
# Stack and reshape the grids.
pos = torch.stack([grid_t, grid_h, grid_w], dim=-1) # [T, pH, pW, 3]
pos = pos.view(-1, 3) # [T * pH * pW, 3]
pos = pos.to(dtype=dtype, device=device)
return pos
def compute_mixed_rotation(
freqs: torch.Tensor,
pos: torch.Tensor,
):
"""
Project each 3-dim position into per-head, per-head-dim 1D frequencies.
Args:
freqs: [3, num_heads, num_freqs] - learned rotation frequency (for t, row, col) for each head position
pos: [N, 3] - position of each token
num_heads: int
Returns:
freqs_cos: [N, num_heads, num_freqs] - cosine components
freqs_sin: [N, num_heads, num_freqs] - sine components
"""
assert freqs.ndim == 3
freqs_sum = torch.einsum("Nd,dhf->Nhf", pos.to(freqs), freqs)
freqs_cos = torch.cos(freqs_sum)
freqs_sin = torch.sin(freqs_sum)
return freqs_cos, freqs_sin

View File

@ -0,0 +1,34 @@
#original code from https://github.com/genmoai/models under apache 2.0 license
# Based on Llama3 Implementation.
import torch
def apply_rotary_emb_qk_real(
xqk: torch.Tensor,
freqs_cos: torch.Tensor,
freqs_sin: torch.Tensor,
) -> torch.Tensor:
"""
Apply rotary embeddings to input tensors using the given frequency tensor without complex numbers.
Args:
xqk (torch.Tensor): Query and/or Key tensors to apply rotary embeddings. Shape: (B, S, *, num_heads, D)
Can be either just query or just key, or both stacked along some batch or * dim.
freqs_cos (torch.Tensor): Precomputed cosine frequency tensor.
freqs_sin (torch.Tensor): Precomputed sine frequency tensor.
Returns:
torch.Tensor: The input tensor with rotary embeddings applied.
"""
# Split the last dimension into even and odd parts
xqk_even = xqk[..., 0::2]
xqk_odd = xqk[..., 1::2]
# Apply rotation
cos_part = (xqk_even * freqs_cos - xqk_odd * freqs_sin).type_as(xqk)
sin_part = (xqk_even * freqs_sin + xqk_odd * freqs_cos).type_as(xqk)
# Interleave the results back into the original shape
out = torch.stack([cos_part, sin_part], dim=-1).flatten(-2)
return out

View File

@ -0,0 +1,102 @@
#original code from https://github.com/genmoai/models under apache 2.0 license
#adapted to ComfyUI
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor:
"""
Pool tokens in x using mask.
NOTE: We assume x does not require gradients.
Args:
x: (B, L, D) tensor of tokens.
mask: (B, L) boolean tensor indicating which tokens are not padding.
Returns:
pooled: (B, D) tensor of pooled tokens.
"""
assert x.size(1) == mask.size(1) # Expected mask to have same length as tokens.
assert x.size(0) == mask.size(0) # Expected mask to have same batch size as tokens.
mask = mask[:, :, None].to(dtype=x.dtype)
mask = mask / mask.sum(dim=1, keepdim=True).clamp(min=1)
pooled = (x * mask).sum(dim=1, keepdim=keepdim)
return pooled
class AttentionPool(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
output_dim: int = None,
device: Optional[torch.device] = None,
dtype=None,
operations=None,
):
"""
Args:
spatial_dim (int): Number of tokens in sequence length.
embed_dim (int): Dimensionality of input tokens.
num_heads (int): Number of attention heads.
output_dim (int): Dimensionality of output tokens. Defaults to embed_dim.
"""
super().__init__()
self.num_heads = num_heads
self.to_kv = operations.Linear(embed_dim, 2 * embed_dim, device=device, dtype=dtype)
self.to_q = operations.Linear(embed_dim, embed_dim, device=device, dtype=dtype)
self.to_out = operations.Linear(embed_dim, output_dim or embed_dim, device=device, dtype=dtype)
def forward(self, x, mask):
"""
Args:
x (torch.Tensor): (B, L, D) tensor of input tokens.
mask (torch.Tensor): (B, L) boolean tensor indicating which tokens are not padding.
NOTE: We assume x does not require gradients.
Returns:
x (torch.Tensor): (B, D) tensor of pooled tokens.
"""
D = x.size(2)
# Construct attention mask, shape: (B, 1, num_queries=1, num_keys=1+L).
attn_mask = mask[:, None, None, :].bool() # (B, 1, 1, L).
attn_mask = F.pad(attn_mask, (1, 0), value=True) # (B, 1, 1, 1+L).
# Average non-padding token features. These will be used as the query.
x_pool = pool_tokens(x, mask, keepdim=True) # (B, 1, D)
# Concat pooled features to input sequence.
x = torch.cat([x_pool, x], dim=1) # (B, L+1, D)
# Compute queries, keys, values. Only the mean token is used to create a query.
kv = self.to_kv(x) # (B, L+1, 2 * D)
q = self.to_q(x[:, 0]) # (B, D)
# Extract heads.
head_dim = D // self.num_heads
kv = kv.unflatten(2, (2, self.num_heads, head_dim)) # (B, 1+L, 2, H, head_dim)
kv = kv.transpose(1, 3) # (B, H, 2, 1+L, head_dim)
k, v = kv.unbind(2) # (B, H, 1+L, head_dim)
q = q.unflatten(1, (self.num_heads, head_dim)) # (B, H, head_dim)
q = q.unsqueeze(2) # (B, H, 1, head_dim)
# Compute attention.
x = F.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, dropout_p=0.0
) # (B, H, 1, head_dim)
# Concatenate heads and run output.
x = x.squeeze(2).flatten(1, 2) # (B, D = H * head_dim)
x = self.to_out(x)
return x

View File

@ -0,0 +1,480 @@
#original code from https://github.com/genmoai/models under apache 2.0 license
#adapted to ComfyUI
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
import comfy.ops
ops = comfy.ops.disable_weight_init
# import mochi_preview.dit.joint_model.context_parallel as cp
# from mochi_preview.vae.cp_conv import cp_pass_frames, gather_all_frames
def cast_tuple(t, length=1):
return t if isinstance(t, tuple) else ((t,) * length)
class GroupNormSpatial(ops.GroupNorm):
"""
GroupNorm applied per-frame.
"""
def forward(self, x: torch.Tensor, *, chunk_size: int = 8):
B, C, T, H, W = x.shape
x = rearrange(x, "B C T H W -> (B T) C H W")
# Run group norm in chunks.
output = torch.empty_like(x)
for b in range(0, B * T, chunk_size):
output[b : b + chunk_size] = super().forward(x[b : b + chunk_size])
return rearrange(output, "(B T) C H W -> B C T H W", B=B, T=T)
class PConv3d(ops.Conv3d):
def __init__(
self,
in_channels,
out_channels,
kernel_size: Union[int, Tuple[int, int, int]],
stride: Union[int, Tuple[int, int, int]],
causal: bool = True,
context_parallel: bool = True,
**kwargs,
):
self.causal = causal
self.context_parallel = context_parallel
kernel_size = cast_tuple(kernel_size, 3)
stride = cast_tuple(stride, 3)
height_pad = (kernel_size[1] - 1) // 2
width_pad = (kernel_size[2] - 1) // 2
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=(1, 1, 1),
padding=(0, height_pad, width_pad),
**kwargs,
)
def forward(self, x: torch.Tensor):
# Compute padding amounts.
context_size = self.kernel_size[0] - 1
if self.causal:
pad_front = context_size
pad_back = 0
else:
pad_front = context_size // 2
pad_back = context_size - pad_front
# Apply padding.
assert self.padding_mode == "replicate" # DEBUG
mode = "constant" if self.padding_mode == "zeros" else self.padding_mode
x = F.pad(x, (0, 0, 0, 0, pad_front, pad_back), mode=mode)
return super().forward(x)
class Conv1x1(ops.Linear):
"""*1x1 Conv implemented with a linear layer."""
def __init__(self, in_features: int, out_features: int, *args, **kwargs):
super().__init__(in_features, out_features, *args, **kwargs)
def forward(self, x: torch.Tensor):
"""Forward pass.
Args:
x: Input tensor. Shape: [B, C, *] or [B, *, C].
Returns:
x: Output tensor. Shape: [B, C', *] or [B, *, C'].
"""
x = x.movedim(1, -1)
x = super().forward(x)
x = x.movedim(-1, 1)
return x
class DepthToSpaceTime(nn.Module):
def __init__(
self,
temporal_expansion: int,
spatial_expansion: int,
):
super().__init__()
self.temporal_expansion = temporal_expansion
self.spatial_expansion = spatial_expansion
# When printed, this module should show the temporal and spatial expansion factors.
def extra_repr(self):
return f"texp={self.temporal_expansion}, sexp={self.spatial_expansion}"
def forward(self, x: torch.Tensor):
"""Forward pass.
Args:
x: Input tensor. Shape: [B, C, T, H, W].
Returns:
x: Rearranged tensor. Shape: [B, C/(st*s*s), T*st, H*s, W*s].
"""
x = rearrange(
x,
"B (C st sh sw) T H W -> B C (T st) (H sh) (W sw)",
st=self.temporal_expansion,
sh=self.spatial_expansion,
sw=self.spatial_expansion,
)
# cp_rank, _ = cp.get_cp_rank_size()
if self.temporal_expansion > 1: # and cp_rank == 0:
# Drop the first self.temporal_expansion - 1 frames.
# This is because we always want the 3x3x3 conv filter to only apply
# to the first frame, and the first frame doesn't need to be repeated.
assert all(x.shape)
x = x[:, :, self.temporal_expansion - 1 :]
assert all(x.shape)
return x
def norm_fn(
in_channels: int,
affine: bool = True,
):
return GroupNormSpatial(affine=affine, num_groups=32, num_channels=in_channels)
class ResBlock(nn.Module):
"""Residual block that preserves the spatial dimensions."""
def __init__(
self,
channels: int,
*,
affine: bool = True,
attn_block: Optional[nn.Module] = None,
padding_mode: str = "replicate",
causal: bool = True,
):
super().__init__()
self.channels = channels
assert causal
self.stack = nn.Sequential(
norm_fn(channels, affine=affine),
nn.SiLU(inplace=True),
PConv3d(
in_channels=channels,
out_channels=channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
padding_mode=padding_mode,
bias=True,
# causal=causal,
),
norm_fn(channels, affine=affine),
nn.SiLU(inplace=True),
PConv3d(
in_channels=channels,
out_channels=channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
padding_mode=padding_mode,
bias=True,
# causal=causal,
),
)
self.attn_block = attn_block if attn_block else nn.Identity()
def forward(self, x: torch.Tensor):
"""Forward pass.
Args:
x: Input tensor. Shape: [B, C, T, H, W].
"""
residual = x
x = self.stack(x)
x = x + residual
del residual
return self.attn_block(x)
class CausalUpsampleBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
num_res_blocks: int,
*,
temporal_expansion: int = 2,
spatial_expansion: int = 2,
**block_kwargs,
):
super().__init__()
blocks = []
for _ in range(num_res_blocks):
blocks.append(block_fn(in_channels, **block_kwargs))
self.blocks = nn.Sequential(*blocks)
self.temporal_expansion = temporal_expansion
self.spatial_expansion = spatial_expansion
# Change channels in the final convolution layer.
self.proj = Conv1x1(
in_channels,
out_channels * temporal_expansion * (spatial_expansion**2),
)
self.d2st = DepthToSpaceTime(
temporal_expansion=temporal_expansion, spatial_expansion=spatial_expansion
)
def forward(self, x):
x = self.blocks(x)
x = self.proj(x)
x = self.d2st(x)
return x
def block_fn(channels, *, has_attention: bool = False, **block_kwargs):
assert has_attention is False #NOTE: if this is ever true add back the attention code.
attn_block = None #AttentionBlock(channels) if has_attention else None
return ResBlock(
channels, affine=True, attn_block=attn_block, **block_kwargs
)
class DownsampleBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
num_res_blocks,
*,
temporal_reduction=2,
spatial_reduction=2,
**block_kwargs,
):
"""
Downsample block for the VAE encoder.
Args:
in_channels: Number of input channels.
out_channels: Number of output channels.
num_res_blocks: Number of residual blocks.
temporal_reduction: Temporal reduction factor.
spatial_reduction: Spatial reduction factor.
"""
super().__init__()
layers = []
# Change the channel count in the strided convolution.
# This lets the ResBlock have uniform channel count,
# as in ConvNeXt.
assert in_channels != out_channels
layers.append(
PConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(temporal_reduction, spatial_reduction, spatial_reduction),
stride=(temporal_reduction, spatial_reduction, spatial_reduction),
padding_mode="replicate",
bias=True,
)
)
for _ in range(num_res_blocks):
layers.append(block_fn(out_channels, **block_kwargs))
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
def add_fourier_features(inputs: torch.Tensor, start=6, stop=8, step=1):
num_freqs = (stop - start) // step
assert inputs.ndim == 5
C = inputs.size(1)
# Create Base 2 Fourier features.
freqs = torch.arange(start, stop, step, dtype=inputs.dtype, device=inputs.device)
assert num_freqs == len(freqs)
w = torch.pow(2.0, freqs) * (2 * torch.pi) # [num_freqs]
C = inputs.shape[1]
w = w.repeat(C)[None, :, None, None, None] # [1, C * num_freqs, 1, 1, 1]
# Interleaved repeat of input channels to match w.
h = inputs.repeat_interleave(num_freqs, dim=1) # [B, C * num_freqs, T, H, W]
# Scale channels by frequency.
h = w * h
return torch.cat(
[
inputs,
torch.sin(h),
torch.cos(h),
],
dim=1,
)
class FourierFeatures(nn.Module):
def __init__(self, start: int = 6, stop: int = 8, step: int = 1):
super().__init__()
self.start = start
self.stop = stop
self.step = step
def forward(self, inputs):
"""Add Fourier features to inputs.
Args:
inputs: Input tensor. Shape: [B, C, T, H, W]
Returns:
h: Output tensor. Shape: [B, (1 + 2 * num_freqs) * C, T, H, W]
"""
return add_fourier_features(inputs, self.start, self.stop, self.step)
class Decoder(nn.Module):
def __init__(
self,
*,
out_channels: int = 3,
latent_dim: int,
base_channels: int,
channel_multipliers: List[int],
num_res_blocks: List[int],
temporal_expansions: Optional[List[int]] = None,
spatial_expansions: Optional[List[int]] = None,
has_attention: List[bool],
output_norm: bool = True,
nonlinearity: str = "silu",
output_nonlinearity: str = "silu",
causal: bool = True,
**block_kwargs,
):
super().__init__()
self.input_channels = latent_dim
self.base_channels = base_channels
self.channel_multipliers = channel_multipliers
self.num_res_blocks = num_res_blocks
self.output_nonlinearity = output_nonlinearity
assert nonlinearity == "silu"
assert causal
ch = [mult * base_channels for mult in channel_multipliers]
self.num_up_blocks = len(ch) - 1
assert len(num_res_blocks) == self.num_up_blocks + 2
blocks = []
first_block = [
nn.Conv3d(latent_dim, ch[-1], kernel_size=(1, 1, 1))
] # Input layer.
# First set of blocks preserve channel count.
for _ in range(num_res_blocks[-1]):
first_block.append(
block_fn(
ch[-1],
has_attention=has_attention[-1],
causal=causal,
**block_kwargs,
)
)
blocks.append(nn.Sequential(*first_block))
assert len(temporal_expansions) == len(spatial_expansions) == self.num_up_blocks
assert len(num_res_blocks) == len(has_attention) == self.num_up_blocks + 2
upsample_block_fn = CausalUpsampleBlock
for i in range(self.num_up_blocks):
block = upsample_block_fn(
ch[-i - 1],
ch[-i - 2],
num_res_blocks=num_res_blocks[-i - 2],
has_attention=has_attention[-i - 2],
temporal_expansion=temporal_expansions[-i - 1],
spatial_expansion=spatial_expansions[-i - 1],
causal=causal,
**block_kwargs,
)
blocks.append(block)
assert not output_norm
# Last block. Preserve channel count.
last_block = []
for _ in range(num_res_blocks[0]):
last_block.append(
block_fn(
ch[0], has_attention=has_attention[0], causal=causal, **block_kwargs
)
)
blocks.append(nn.Sequential(*last_block))
self.blocks = nn.ModuleList(blocks)
self.output_proj = Conv1x1(ch[0], out_channels)
def forward(self, x):
"""Forward pass.
Args:
x: Latent tensor. Shape: [B, input_channels, t, h, w]. Scaled [-1, 1].
Returns:
x: Reconstructed video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1].
T + 1 = (t - 1) * 4.
H = h * 16, W = w * 16.
"""
for block in self.blocks:
x = block(x)
if self.output_nonlinearity == "silu":
x = F.silu(x, inplace=not self.training)
else:
assert (
not self.output_nonlinearity
) # StyleGAN3 omits the to-RGB nonlinearity.
return self.output_proj(x).contiguous()
class VideoVAE(nn.Module):
def __init__(self):
super().__init__()
self.encoder = None #TODO once the model releases
self.decoder = Decoder(
out_channels=3,
base_channels=128,
channel_multipliers=[1, 2, 4, 6],
temporal_expansions=[1, 2, 3],
spatial_expansions=[2, 2, 2],
num_res_blocks=[3, 3, 4, 6, 3],
latent_dim=12,
has_attention=[False, False, False, False, False],
padding_mode="replicate",
output_norm=False,
nonlinearity="silu",
output_nonlinearity="silu",
causal=True,
)
def encode(self, x):
return self.encoder(x)
def decode(self, x):
return self.decoder(x)

View File

@ -1,11 +1,11 @@
import logging
import math
from typing import Dict, Optional
from typing import Dict, Optional, List
import numpy as np
import torch
import torch.nn as nn
from .. import attention
from ..attention import optimized_attention
from einops import rearrange, repeat
from .util import timestep_embedding
import comfy.ops
@ -97,7 +97,7 @@ class PatchEmbed(nn.Module):
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
B, C, H, W = x.shape
# B, C, H, W = x.shape
# if self.img_size is not None:
# if self.strict_img_size:
# _assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).")
@ -266,8 +266,6 @@ def split_qkv(qkv, head_dim):
qkv = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, -1, head_dim).movedim(2, 0)
return qkv[0], qkv[1], qkv[2]
def optimized_attention(qkv, num_heads):
return attention.optimized_attention(qkv[0], qkv[1], qkv[2], num_heads)
class SelfAttention(nn.Module):
ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug")
@ -326,9 +324,9 @@ class SelfAttention(nn.Module):
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
qkv = self.pre_attention(x)
q, k, v = self.pre_attention(x)
x = optimized_attention(
qkv, num_heads=self.num_heads
q, k, v, heads=self.num_heads
)
x = self.post_attention(x)
return x
@ -417,6 +415,7 @@ class DismantledBlock(nn.Module):
scale_mod_only: bool = False,
swiglu: bool = False,
qk_norm: Optional[str] = None,
x_block_self_attn: bool = False,
dtype=None,
device=None,
operations=None,
@ -440,6 +439,24 @@ class DismantledBlock(nn.Module):
device=device,
operations=operations
)
if x_block_self_attn:
assert not pre_only
assert not scale_mod_only
self.x_block_self_attn = True
self.attn2 = SelfAttention(
dim=hidden_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_mode=attn_mode,
pre_only=False,
qk_norm=qk_norm,
rmsnorm=rmsnorm,
dtype=dtype,
device=device,
operations=operations
)
else:
self.x_block_self_attn = False
if not pre_only:
if not rmsnorm:
self.norm2 = operations.LayerNorm(
@ -466,7 +483,11 @@ class DismantledBlock(nn.Module):
multiple_of=256,
)
self.scale_mod_only = scale_mod_only
if not scale_mod_only:
if x_block_self_attn:
assert not pre_only
assert not scale_mod_only
n_mods = 9
elif not scale_mod_only:
n_mods = 6 if not pre_only else 2
else:
n_mods = 4 if not pre_only else 1
@ -527,14 +548,64 @@ class DismantledBlock(nn.Module):
)
return x
def pre_attention_x(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
assert self.x_block_self_attn
(
shift_msa,
scale_msa,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
shift_msa2,
scale_msa2,
gate_msa2,
) = self.adaLN_modulation(c).chunk(9, dim=1)
x_norm = self.norm1(x)
qkv = self.attn.pre_attention(modulate(x_norm, shift_msa, scale_msa))
qkv2 = self.attn2.pre_attention(modulate(x_norm, shift_msa2, scale_msa2))
return qkv, qkv2, (
x,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
gate_msa2,
)
def post_attention_x(self, attn, attn2, x, gate_msa, shift_mlp, scale_mlp, gate_mlp, gate_msa2):
assert not self.pre_only
attn1 = self.attn.post_attention(attn)
attn2 = self.attn2.post_attention(attn2)
out1 = gate_msa.unsqueeze(1) * attn1
out2 = gate_msa2.unsqueeze(1) * attn2
x = x + out1
x = x + out2
x = x + gate_mlp.unsqueeze(1) * self.mlp(
modulate(self.norm2(x), shift_mlp, scale_mlp)
)
return x
def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
assert not self.pre_only
qkv, intermediates = self.pre_attention(x, c)
attn = optimized_attention(
qkv,
num_heads=self.attn.num_heads,
)
return self.post_attention(attn, *intermediates)
if self.x_block_self_attn:
qkv, qkv2, intermediates = self.pre_attention_x(x, c)
attn, _ = optimized_attention(
qkv[0], qkv[1], qkv[2],
num_heads=self.attn.num_heads,
)
attn2, _ = optimized_attention(
qkv2[0], qkv2[1], qkv2[2],
num_heads=self.attn2.num_heads,
)
return self.post_attention_x(attn, attn2, *intermediates)
else:
qkv, intermediates = self.pre_attention(x, c)
attn = optimized_attention(
qkv[0], qkv[1], qkv[2],
heads=self.attn.num_heads,
)
return self.post_attention(attn, *intermediates)
def block_mixing(*args, use_checkpoint=True, **kwargs):
@ -549,7 +620,10 @@ def block_mixing(*args, use_checkpoint=True, **kwargs):
def _block_mixing(context, x, context_block, x_block, c):
context_qkv, context_intermediates = context_block.pre_attention(context, c)
x_qkv, x_intermediates = x_block.pre_attention(x, c)
if x_block.x_block_self_attn:
x_qkv, x_qkv2, x_intermediates = x_block.pre_attention_x(x, c)
else:
x_qkv, x_intermediates = x_block.pre_attention(x, c)
o = []
for t in range(3):
@ -557,8 +631,8 @@ def _block_mixing(context, x, context_block, x_block, c):
qkv = tuple(o)
attn = optimized_attention(
qkv,
num_heads=x_block.attn.num_heads,
qkv[0], qkv[1], qkv[2],
heads=x_block.attn.num_heads,
)
context_attn, x_attn = (
attn[:, : context_qkv[0].shape[1]],
@ -570,7 +644,14 @@ def _block_mixing(context, x, context_block, x_block, c):
else:
context = None
x = x_block.post_attention(x_attn, *x_intermediates)
if x_block.x_block_self_attn:
attn2 = optimized_attention(
x_qkv2[0], x_qkv2[1], x_qkv2[2],
heads=x_block.attn2.num_heads,
)
x = x_block.post_attention_x(x_attn, attn2, *x_intermediates)
else:
x = x_block.post_attention(x_attn, *x_intermediates)
return context, x
@ -585,8 +666,13 @@ class JointBlock(nn.Module):
super().__init__()
pre_only = kwargs.pop("pre_only")
qk_norm = kwargs.pop("qk_norm", None)
x_block_self_attn = kwargs.pop("x_block_self_attn", False)
self.context_block = DismantledBlock(*args, pre_only=pre_only, qk_norm=qk_norm, **kwargs)
self.x_block = DismantledBlock(*args, pre_only=False, qk_norm=qk_norm, **kwargs)
self.x_block = DismantledBlock(*args,
pre_only=False,
qk_norm=qk_norm,
x_block_self_attn=x_block_self_attn,
**kwargs)
def forward(self, *args, **kwargs):
return block_mixing(
@ -642,7 +728,7 @@ class SelfAttentionContext(nn.Module):
def forward(self, x):
qkv = self.qkv(x)
q, k, v = split_qkv(qkv, self.dim_head)
x = optimized_attention((q.reshape(q.shape[0], q.shape[1], -1), k, v), self.heads)
x = optimized_attention(q.reshape(q.shape[0], q.shape[1], -1), k, v, heads=self.heads)
return self.proj(x)
class ContextProcessorBlock(nn.Module):
@ -701,9 +787,12 @@ class MMDiT(nn.Module):
qk_norm: Optional[str] = None,
qkv_bias: bool = True,
context_processor_layers = None,
x_block_self_attn: bool = False,
x_block_self_attn_layers: Optional[List[int]] = [],
context_size = 4096,
num_blocks = None,
final_layer = True,
skip_blocks = False,
dtype = None, #TODO
device = None,
operations = None,
@ -718,6 +807,7 @@ class MMDiT(nn.Module):
self.pos_embed_scaling_factor = pos_embed_scaling_factor
self.pos_embed_offset = pos_embed_offset
self.pos_embed_max_size = pos_embed_max_size
self.x_block_self_attn_layers = x_block_self_attn_layers
# hidden_size = default(hidden_size, 64 * depth)
# num_heads = default(num_heads, hidden_size // 64)
@ -775,26 +865,28 @@ class MMDiT(nn.Module):
self.pos_embed = None
self.use_checkpoint = use_checkpoint
self.joint_blocks = nn.ModuleList(
[
JointBlock(
self.hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
attn_mode=attn_mode,
pre_only=(i == num_blocks - 1) and final_layer,
rmsnorm=rmsnorm,
scale_mod_only=scale_mod_only,
swiglu=swiglu,
qk_norm=qk_norm,
dtype=dtype,
device=device,
operations=operations
)
for i in range(num_blocks)
]
)
if not skip_blocks:
self.joint_blocks = nn.ModuleList(
[
JointBlock(
self.hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
attn_mode=attn_mode,
pre_only=(i == num_blocks - 1) and final_layer,
rmsnorm=rmsnorm,
scale_mod_only=scale_mod_only,
swiglu=swiglu,
qk_norm=qk_norm,
x_block_self_attn=(i in self.x_block_self_attn_layers) or x_block_self_attn,
dtype=dtype,
device=device,
operations=operations,
)
for i in range(num_blocks)
]
)
if final_layer:
self.final_layer = FinalLayer(self.hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
@ -857,7 +949,9 @@ class MMDiT(nn.Module):
c_mod: torch.Tensor,
context: Optional[torch.Tensor] = None,
control = None,
transformer_options = {},
) -> torch.Tensor:
patches_replace = transformer_options.get("patches_replace", {})
if self.register_length > 0:
context = torch.cat(
(
@ -869,14 +963,25 @@ class MMDiT(nn.Module):
# context is B, L', D
# x is B, L, D
blocks_replace = patches_replace.get("dit", {})
blocks = len(self.joint_blocks)
for i in range(blocks):
context, x = self.joint_blocks[i](
context,
x,
c=c_mod,
use_checkpoint=self.use_checkpoint,
)
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["txt"], out["img"] = self.joint_blocks[i](args["txt"], args["img"], c=args["vec"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": c_mod}, {"original_block": block_wrap})
context = out["txt"]
x = out["img"]
else:
context, x = self.joint_blocks[i](
context,
x,
c=c_mod,
use_checkpoint=self.use_checkpoint,
)
if control is not None:
control_o = control.get("output")
if i < len(control_o):
@ -894,6 +999,7 @@ class MMDiT(nn.Module):
y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
control = None,
transformer_options = {},
) -> torch.Tensor:
"""
Forward pass of DiT.
@ -915,7 +1021,7 @@ class MMDiT(nn.Module):
if context is not None:
context = self.context_embedder(context)
x = self.forward_core_with_concat(x, c, context, control)
x = self.forward_core_with_concat(x, c, context, control, transformer_options)
x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W)
return x[:,:,:hw[-2],:hw[-1]]
@ -929,7 +1035,8 @@ class OpenAISignatureMMDITWrapper(MMDiT):
context: Optional[torch.Tensor] = None,
y: Optional[torch.Tensor] = None,
control = None,
transformer_options = {},
**kwargs,
) -> torch.Tensor:
return super().forward(x, timesteps, context=context, y=y, control=control)
return super().forward(x, timesteps, context=context, y=y, control=control, transformer_options=transformer_options)

View File

@ -317,6 +317,10 @@ def model_lora_keys_unet(model, key_map={}):
key_lora = "lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_")) #OneTrainer lora
key_map[key_lora] = to
key_lora = "lycoris_{}".format(k[:-len(".weight")].replace(".", "_")) #simpletuner lycoris format
key_map[key_lora] = to
if isinstance(model, comfy.model_base.AuraFlow): #Diffusers lora AuraFlow
diffusers_keys = comfy.utils.auraflow_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
for k in diffusers_keys:
@ -415,7 +419,7 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
weight *= strength_model
if isinstance(v, list):
v = (calculate_weight(v[1:], comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype, copy=True), key, intermediate_dtype=intermediate_dtype), )
v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), )
if len(v) == 1:
patch_type = "diff"

View File

@ -24,6 +24,7 @@ from comfy.ldm.cascade.stage_b import StageB
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.mmdit import OpenAISignatureMMDITWrapper
import comfy.ldm.genmo.joint_model.asymm_models_joint
import comfy.ldm.aura.mmdit
import comfy.ldm.hydit.models
import comfy.ldm.audio.dit
@ -96,7 +97,8 @@ class BaseModel(torch.nn.Module):
if not unet_config.get("disable_unet_model_creation", False):
if model_config.custom_operations is None:
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=model_config.optimizations.get("fp8", False))
fp8 = model_config.optimizations.get("fp8", model_config.scaled_fp8 is not None)
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8)
else:
operations = model_config.custom_operations
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
@ -244,6 +246,10 @@ class BaseModel(torch.nn.Module):
extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))
unet_state_dict = self.diffusion_model.state_dict()
if self.model_config.scaled_fp8 is not None:
unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8)
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
if self.model_type == ModelType.V_PREDICTION:
@ -713,3 +719,18 @@ class Flux(BaseModel):
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 3.5)]))
return out
class GenmoMochi(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.genmo.joint_model.asymm_models_joint.AsymmDiTJoint)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
out['num_tokens'] = comfy.conds.CONDConstant(max(1, torch.sum(attention_mask).item()))
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out

View File

@ -70,6 +70,11 @@ def detect_unet_config(state_dict, key_prefix):
context_processor = '{}context_processor.layers.0.attn.qkv.weight'.format(key_prefix)
if context_processor in state_dict_keys:
unet_config["context_processor_layers"] = count_blocks(state_dict_keys, '{}context_processor.layers.'.format(key_prefix) + '{}.')
unet_config["x_block_self_attn_layers"] = []
for key in state_dict_keys:
if key.startswith('{}joint_blocks.'.format(key_prefix)) and key.endswith('.x_block.attn2.qkv.weight'):
layer = key[len('{}joint_blocks.'.format(key_prefix)):-len('.x_block.attn2.qkv.weight')]
unet_config["x_block_self_attn_layers"].append(int(layer))
return unet_config
if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade
@ -145,6 +150,34 @@ def detect_unet_config(state_dict, key_prefix):
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
return dit_config
if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: #Genmo mochi preview
dit_config = {}
dit_config["image_model"] = "mochi_preview"
dit_config["depth"] = 48
dit_config["patch_size"] = 2
dit_config["num_heads"] = 24
dit_config["hidden_size_x"] = 3072
dit_config["hidden_size_y"] = 1536
dit_config["mlp_ratio_x"] = 4.0
dit_config["mlp_ratio_y"] = 4.0
dit_config["learn_sigma"] = False
dit_config["in_channels"] = 12
dit_config["qk_norm"] = True
dit_config["qkv_bias"] = False
dit_config["out_bias"] = True
dit_config["attn_drop"] = 0.0
dit_config["patch_embed_bias"] = True
dit_config["posenc_preserve_area"] = True
dit_config["timestep_mlp_bias"] = True
dit_config["attend_to_padding"] = False
dit_config["timestep_scale"] = 1000.0
dit_config["use_t5"] = True
dit_config["t5_feat_dim"] = 4096
dit_config["t5_token_length"] = 256
dit_config["rope_theta"] = 10000.0
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None
@ -286,9 +319,15 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
return None
model_config = model_config_from_unet_config(unet_config, state_dict)
if model_config is None and use_base_if_no_match:
return comfy.supported_models_base.BASE(unet_config)
else:
return model_config
model_config = comfy.supported_models_base.BASE(unet_config)
scaled_fp8_weight = state_dict.get("{}scaled_fp8".format(unet_key_prefix), None)
if scaled_fp8_weight is not None:
model_config.scaled_fp8 = scaled_fp8_weight.dtype
if model_config.scaled_fp8 == torch.float32:
model_config.scaled_fp8 = torch.float8_e4m3fn
return model_config
def unet_prefix_from_state_dict(state_dict):
candidates = ["model.diffusion_model.", #ldm/sgm models

View File

@ -647,6 +647,9 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
pass
if fp8_dtype is not None:
if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive
return fp8_dtype
free_model_memory = maximum_vram_for_weights(device)
if model_params * 2 > free_model_memory:
return fp8_dtype
@ -840,27 +843,21 @@ def force_channels_last():
#TODO
return False
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False):
if device is None or weight.device == device:
if not copy:
if dtype is None or weight.dtype == dtype:
return weight
return weight.to(dtype=dtype, copy=copy)
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
return r
def cast_to_device(tensor, device, dtype, copy=False):
device_supports_cast = False
if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
device_supports_cast = True
elif tensor.dtype == torch.bfloat16:
if hasattr(device, 'type') and device.type.startswith("cuda"):
device_supports_cast = True
elif is_intel_xpu():
device_supports_cast = True
non_blocking = device_supports_non_blocking(device)
return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy)
non_blocking = device_should_use_non_blocking(device)
if device_supports_cast:
if copy:
if tensor.device == device:
return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
else:
return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
else:
return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
def xformers_enabled():
global directml_enabled

View File

@ -94,6 +94,31 @@ class LowVramPatch:
return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key))
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
def get_key_weight(model, key):
set_func = None
convert_func = None
op_keys = key.rsplit('.', 1)
if len(op_keys) < 2:
weight = comfy.utils.get_attr(model, key)
else:
op = comfy.utils.get_attr(model, op_keys[0])
try:
set_func = getattr(op, "set_{}".format(op_keys[1]))
except AttributeError:
pass
try:
convert_func = getattr(op, "convert_{}".format(op_keys[1]))
except AttributeError:
pass
weight = getattr(op, op_keys[1])
if convert_func is not None:
weight = comfy.utils.get_attr(model, key)
return weight, set_func, convert_func
class ModelPatcher:
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
self.size = size
@ -294,14 +319,16 @@ class ModelPatcher:
if not k.startswith(filter_prefix):
continue
bk = self.backup.get(k, None)
weight, set_func, convert_func = get_key_weight(self.model, k)
if bk is not None:
weight = bk.weight
else:
weight = model_sd[k]
if convert_func is None:
convert_func = lambda a, **kwargs: a
if k in self.patches:
p[k] = [weight] + self.patches[k]
p[k] = [(weight, convert_func)] + self.patches[k]
else:
p[k] = (weight,)
p[k] = [(weight, convert_func)]
return p
def model_state_dict(self, filter_prefix=None):
@ -317,8 +344,7 @@ class ModelPatcher:
if key not in self.patches:
return
weight = comfy.utils.get_attr(self.model, key)
weight, set_func, convert_func = get_key_weight(self.model, key)
inplace_update = self.weight_inplace_update or inplace_update
if key not in self.backup:
@ -328,12 +354,18 @@ class ModelPatcher:
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
else:
temp_weight = weight.to(torch.float32, copy=True)
if convert_func is not None:
temp_weight = convert_func(temp_weight, inplace=True)
out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key)
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
if inplace_update:
comfy.utils.copy_to_param(self.model, key, out_weight)
if set_func is None:
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
if inplace_update:
comfy.utils.copy_to_param(self.model, key, out_weight)
else:
comfy.utils.set_attr_param(self.model, key, out_weight)
else:
comfy.utils.set_attr_param(self.model, key, out_weight)
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
mem_counter = 0

View File

@ -19,20 +19,12 @@
import torch
import comfy.model_management
from comfy.cli_args import args
import comfy.float
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False):
if device is None or weight.device == device:
if not copy:
if dtype is None or weight.dtype == dtype:
return weight
return weight.to(dtype=dtype, copy=copy)
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
return r
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
def cast_to_input(weight, input, non_blocking=False, copy=True):
return cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
if input is not None:
@ -47,12 +39,12 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
non_blocking = comfy.model_management.device_supports_non_blocking(device)
if s.bias is not None:
has_function = s.bias_function is not None
bias = cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function)
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function)
if has_function:
bias = s.bias_function(bias)
has_function = s.weight_function is not None
weight = cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function)
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function)
if has_function:
weight = s.weight_function(weight)
return weight, bias
@ -258,19 +250,29 @@ def fp8_linear(self, input):
if dtype not in [torch.float8_e4m3fn]:
return None
tensor_2d = False
if len(input.shape) == 2:
tensor_2d = True
input = input.unsqueeze(1)
if len(input.shape) == 3:
inn = input.reshape(-1, input.shape[2]).to(dtype)
w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input.dtype)
w = w.t()
scale_weight = self.scale_weight
scale_input = self.scale_input
if scale_weight is None:
scale_weight = torch.ones((1), device=input.device, dtype=torch.float32)
if scale_input is None:
scale_input = scale_weight
scale_weight = torch.ones((), device=input.device, dtype=torch.float32)
else:
scale_weight = scale_weight.to(input.device)
if scale_input is None:
scale_input = torch.ones((1), device=input.device, dtype=torch.float32)
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
inn = input.reshape(-1, input.shape[2]).to(dtype)
else:
scale_input = scale_input.to(input.device)
inn = (input * (1.0 / scale_input).to(input.dtype)).reshape(-1, input.shape[2]).to(dtype)
if bias is not None:
o = torch._scaled_mm(inn, w, out_dtype=input.dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
@ -280,7 +282,11 @@ def fp8_linear(self, input):
if isinstance(o, tuple):
o = o[0]
if tensor_2d:
return o.reshape(input.shape[0], -1)
return o.reshape((-1, input.shape[1], self.weight.shape[0]))
return None
class fp8_ops(manual_cast):
@ -298,15 +304,63 @@ class fp8_ops(manual_cast):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
class scaled_fp8_op(manual_cast):
class Linear(manual_cast.Linear):
def __init__(self, *args, **kwargs):
if override_dtype is not None:
kwargs['dtype'] = override_dtype
super().__init__(*args, **kwargs)
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False):
if comfy.model_management.supports_fp8_compute(load_device):
if (fp8_optimizations or args.fast) and not disable_fast_fp8:
return fp8_ops
def reset_parameters(self):
if not hasattr(self, 'scale_weight'):
self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
if not scale_input:
self.scale_input = None
if not hasattr(self, 'scale_input'):
self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
return None
def forward_comfy_cast_weights(self, input):
if fp8_matrix_mult:
out = fp8_linear(self, input)
if out is not None:
return out
weight, bias = cast_bias_weight(self, input)
if weight.numel() < input.numel(): #TODO: optimize
return torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
else:
return torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)
def convert_weight(self, weight, inplace=False, **kwargs):
if inplace:
weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype)
return weight
else:
return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype)
def set_weight(self, weight, inplace_update=False, seed=None, **kwargs):
weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed)
if inplace_update:
self.weight.data.copy_(weight)
else:
self.weight = torch.nn.Parameter(weight, requires_grad=False)
return scaled_fp8_op
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
if scaled_fp8 is not None:
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute, scale_input=True, override_dtype=scaled_fp8)
if fp8_compute and (fp8_optimizations or args.fast) and not disable_fast_fp8:
return fp8_ops
if compute_dtype is None or weight_dtype == compute_dtype:
return disable_weight_init
if args.fast and not disable_fast_fp8:
if comfy.model_management.supports_fp8_compute(load_device):
return fp8_ops
return manual_cast

View File

@ -358,11 +358,35 @@ def beta_scheduler(model_sampling, steps, alpha=0.6, beta=0.6):
ts = numpy.rint(scipy.stats.beta.ppf(ts, alpha, beta) * total_timesteps)
sigs = []
last_t = -1
for t in ts:
sigs += [float(model_sampling.sigmas[int(t)])]
if t != last_t:
sigs += [float(model_sampling.sigmas[int(t)])]
last_t = t
sigs += [0.0]
return torch.FloatTensor(sigs)
# from: https://github.com/genmoai/models/blob/main/src/mochi_preview/infer.py#L41
def linear_quadratic_schedule(model_sampling, steps, threshold_noise=0.025, linear_steps=None):
if steps == 1:
sigma_schedule = [1.0, 0.0]
else:
if linear_steps is None:
linear_steps = steps // 2
linear_sigma_schedule = [i * threshold_noise / linear_steps for i in range(linear_steps)]
threshold_noise_step_diff = linear_steps - threshold_noise * steps
quadratic_steps = steps - linear_steps
quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps ** 2)
linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (quadratic_steps ** 2)
const = quadratic_coef * (linear_steps ** 2)
quadratic_sigma_schedule = [
quadratic_coef * (i ** 2) + linear_coef * i + const
for i in range(linear_steps, steps)
]
sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0]
sigma_schedule = [1.0 - x for x in sigma_schedule]
return torch.FloatTensor(sigma_schedule) * model_sampling.sigma_max.cpu()
def get_mask_aabb(masks):
if masks.numel() == 0:
return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
@ -729,7 +753,7 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "beta"]
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "beta", "linear_quadratic"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]
def calculate_sigmas(model_sampling, scheduler_name, steps):
@ -747,6 +771,8 @@ def calculate_sigmas(model_sampling, scheduler_name, steps):
sigmas = normal_scheduler(model_sampling, steps, sgm=True)
elif scheduler_name == "beta":
sigmas = beta_scheduler(model_sampling, steps)
elif scheduler_name == "linear_quadratic":
sigmas = linear_quadratic_schedule(model_sampling, steps)
else:
logging.error("error invalid scheduler {}".format(scheduler_name))
return sigmas

View File

@ -7,6 +7,7 @@ from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
from .ldm.cascade.stage_a import StageA
from .ldm.cascade.stage_c_coder import StageC_coder
from .ldm.audio.autoencoder import AudioOobleckVAE
import comfy.ldm.genmo.vae.model
import yaml
import comfy.utils
@ -25,6 +26,7 @@ import comfy.text_encoders.aura_t5
import comfy.text_encoders.hydit
import comfy.text_encoders.flux
import comfy.text_encoders.long_clipl
import comfy.text_encoders.genmo
import comfy.model_patcher
import comfy.lora
@ -241,6 +243,13 @@ class VAE:
self.process_output = lambda audio: audio
self.process_input = lambda audio: audio
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
elif "blocks.2.blocks.3.stack.5.weight" in sd or "decoder.blocks.2.blocks.3.stack.5.weight" in sd: #genmo mochi vae
if "blocks.2.blocks.3.stack.5.weight" in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "decoder."})
self.first_stage_model = comfy.ldm.genmo.vae.model.VideoVAE()
self.latent_channels = 12
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype)
self.upscale_ratio = (lambda a: max(0, a * 6 - 5), 8, 8)
else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None
@ -296,6 +305,10 @@ class VAE:
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
return comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device)
def decode_tiled_3d(self, samples, tile_t=999, tile_x=32, tile_y=32, overlap=(1, 8, 8)):
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
return self.process_output(comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device))
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
@ -314,6 +327,7 @@ class VAE:
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=(1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device)
def decode(self, samples_in):
pixel_samples = None
try:
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
@ -321,16 +335,21 @@ class VAE:
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
pixel_samples = torch.empty((samples_in.shape[0], self.output_channels) + tuple(map(lambda a: a * self.upscale_ratio, samples_in.shape[2:])), device=self.output_device)
for x in range(0, samples_in.shape[0], batch_number):
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
pixel_samples[x:x+batch_number] = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float())
out = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float())
if pixel_samples is None:
pixel_samples = torch.empty((samples_in.shape[0],) + tuple(out.shape[1:]), device=self.output_device)
pixel_samples[x:x+batch_number] = out
except model_management.OOM_EXCEPTION as e:
logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
if len(samples_in.shape) == 3:
dims = samples_in.ndim - 2
if dims == 1:
pixel_samples = self.decode_tiled_1d(samples_in)
else:
elif dims == 2:
pixel_samples = self.decode_tiled_(samples_in)
elif dims == 3:
pixel_samples = self.decode_tiled_3d(samples_in)
pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1)
return pixel_samples
@ -398,6 +417,7 @@ class CLIPType(Enum):
STABLE_AUDIO = 4
HUNYUAN_DIT = 5
FLUX = 6
MOCHI = 7
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
clip_data = []
@ -432,16 +452,14 @@ def detect_te_model(sd):
return None
def t5xxl_weight_dtype(clip_data):
def t5xxl_detect(clip_data):
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
dtype_t5 = None
for sd in clip_data:
weight = sd.get(weight_name, None)
if weight is not None:
dtype_t5 = weight.dtype
break
return dtype_t5
if weight_name in sd:
return comfy.text_encoders.sd3_clip.t5_xxl_detect(sd)
return {}
def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
@ -475,8 +493,12 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.sd2_clip.SD2ClipModel
clip_target.tokenizer = comfy.text_encoders.sd2_clip.SD2Tokenizer
elif te_model == TEModel.T5_XXL:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, dtype_t5=t5xxl_weight_dtype(clip_data))
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
if clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, **t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
else: #CLIPType.MOCHI
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer
elif te_model == TEModel.T5_XL:
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
@ -493,19 +515,19 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif len(clip_data) == 2:
if clip_type == CLIPType.SD3:
te_models = [detect_te_model(clip_data[0]), detect_te_model(clip_data[1])]
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models, dtype_t5=t5xxl_weight_dtype(clip_data))
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models, **t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HUNYUAN_DIT:
clip_target.clip = comfy.text_encoders.hydit.HyditModel
clip_target.tokenizer = comfy.text_encoders.hydit.HyditTokenizer
elif clip_type == CLIPType.FLUX:
clip_target.clip = comfy.text_encoders.flux.flux_clip(dtype_t5=t5xxl_weight_dtype(clip_data))
clip_target.clip = comfy.text_encoders.flux.flux_clip(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.flux.FluxTokenizer
else:
clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
elif len(clip_data) == 3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(dtype_t5=t5xxl_weight_dtype(clip_data))
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
parameters = 0
@ -580,7 +602,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
return None
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if weight_dtype is not None:
if weight_dtype is not None and model_config.scaled_fp8 is None:
unet_weight_dtype.append(weight_dtype)
model_config.custom_operations = model_options.get("custom_operations", None)
@ -649,6 +671,8 @@ def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffuse
sd = temp_sd
parameters = comfy.utils.calculate_parameters(sd)
weight_dtype = comfy.utils.weight_dtype(sd)
load_device = model_management.get_torch_device()
model_config = model_detection.model_config_from_unet(sd, "")
@ -675,8 +699,12 @@ def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffuse
logging.warning("{} {}".format(diffusers_keys[k], k))
offload_device = model_management.unet_offload_device()
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if weight_dtype is not None and model_config.scaled_fp8 is None:
unet_weight_dtype.append(weight_dtype)
if dtype is None:
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
else:
unet_dtype = dtype

View File

@ -94,11 +94,20 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
config = json.load(f)
operations = model_options.get("custom_operations", None)
scaled_fp8 = None
if operations is None:
operations = comfy.ops.manual_cast
scaled_fp8 = model_options.get("scaled_fp8", None)
if scaled_fp8 is not None:
operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8)
else:
operations = comfy.ops.manual_cast
self.operations = operations
self.transformer = model_class(config, dtype, device, self.operations)
if scaled_fp8 is not None:
self.transformer.scaled_fp8 = torch.nn.Parameter(torch.tensor([], dtype=scaled_fp8))
self.num_layers = self.transformer.num_layers
self.max_length = max_length

View File

@ -10,6 +10,7 @@ import comfy.text_encoders.sa_t5
import comfy.text_encoders.aura_t5
import comfy.text_encoders.hydit
import comfy.text_encoders.flux
import comfy.text_encoders.genmo
from . import supported_models_base
from . import latent_formats
@ -529,12 +530,11 @@ class SD3(supported_models_base.BASE):
clip_l = True
if "{}clip_g.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict:
clip_g = True
t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref)
if t5_key in state_dict:
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
if "dtype_t5" in t5_detect:
t5 = True
dtype_t5 = state_dict[t5_key].dtype
return supported_models_base.ClipTarget(comfy.text_encoders.sd3_clip.SD3Tokenizer, comfy.text_encoders.sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5))
return supported_models_base.ClipTarget(comfy.text_encoders.sd3_clip.SD3Tokenizer, comfy.text_encoders.sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, **t5_detect))
class StableAudio(supported_models_base.BASE):
unet_config = {
@ -653,11 +653,8 @@ class Flux(supported_models_base.BASE):
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref)
dtype_t5 = None
if t5_key in state_dict:
dtype_t5 = state_dict[t5_key].dtype
return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(dtype_t5=dtype_t5))
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(**t5_detect))
class FluxSchnell(Flux):
unet_config = {
@ -674,7 +671,36 @@ class FluxSchnell(Flux):
out = model_base.Flux(self, model_type=model_base.ModelType.FLOW, device=device)
return out
class GenmoMochi(supported_models_base.BASE):
unet_config = {
"image_model": "mochi_preview",
}
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, Flux, FluxSchnell]
sampling_settings = {
"multiplier": 1.0,
"shift": 6.0,
}
unet_extra_config = {}
latent_format = latent_formats.Mochi
memory_usage_factor = 2.0 #TODO
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.GenmoMochi(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.genmo.MochiT5Tokenizer, comfy.text_encoders.genmo.mochi_te(**t5_detect))
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, Flux, FluxSchnell, GenmoMochi]
models += [SVD_img2vid]

View File

@ -49,6 +49,7 @@ class BASE:
manual_cast_dtype = None
custom_operations = None
scaled_fp8 = None
optimizations = {"fp8": False}
@classmethod

View File

@ -1,15 +1,11 @@
from comfy import sd1_clip
import comfy.text_encoders.t5
import comfy.text_encoders.sd3_clip
import comfy.model_management
from transformers import T5TokenizerFast
import torch
import os
class T5XXLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, model_options=model_options)
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
@ -41,7 +37,7 @@ class FluxClipModel(torch.nn.Module):
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
self.t5xxl = comfy.text_encoders.sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
self.dtypes = set([dtype, dtype_t5])
def set_clip_options(self, options):
@ -66,8 +62,11 @@ class FluxClipModel(torch.nn.Module):
else:
return self.t5xxl.load_sd(sd)
def flux_clip(dtype_t5=None):
def flux_clip(dtype_t5=None, t5xxl_scaled_fp8=None):
class FluxClipModel_(FluxClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options)
return FluxClipModel_

View File

@ -0,0 +1,38 @@
from comfy import sd1_clip
import comfy.text_encoders.sd3_clip
import os
from transformers import T5TokenizerFast
class T5XXLModel(comfy.text_encoders.sd3_clip.T5XXLModel):
def __init__(self, **kwargs):
kwargs["attention_mask"] = True
super().__init__(**kwargs)
class MochiT5XXL(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, dtype=dtype, clip_name="t5xxl", clip_model=T5XXLModel, model_options=model_options)
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
class MochiT5Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
def mochi_te(dtype_t5=None, t5xxl_scaled_fp8=None):
class MochiTEModel_(MochiT5XXL):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
if dtype is None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)
return MochiTEModel_

View File

@ -10,8 +10,26 @@ import logging
class T5XXLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=False, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None)
if t5xxl_scaled_fp8 is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = t5xxl_scaled_fp8
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
def t5_xxl_detect(state_dict, prefix=""):
out = {}
t5_key = "{}encoder.final_layer_norm.weight".format(prefix)
if t5_key in state_dict:
out["dtype_t5"] = state_dict[t5_key].dtype
scaled_fp8_key = "{}scaled_fp8".format(prefix)
if scaled_fp8_key in state_dict:
out["t5xxl_scaled_fp8"] = state_dict[scaled_fp8_key].dtype
return out
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
@ -139,8 +157,11 @@ class SD3ClipModel(torch.nn.Module):
else:
return self.t5xxl.load_sd(sd)
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_attention_mask=False):
def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5xxl_scaled_fp8=None, t5_attention_mask=False):
class SD3ClipModel_(SD3ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, t5_attention_mask=t5_attention_mask, device=device, dtype=dtype, model_options=model_options)
return SD3ClipModel_

View File

@ -68,7 +68,7 @@ def weight_dtype(sd, prefix=""):
for k in sd.keys():
if k.startswith(prefix):
w = sd[k]
dtypes[w.dtype] = dtypes.get(w.dtype, 0) + 1
dtypes[w.dtype] = dtypes.get(w.dtype, 0) + w.numel()
if len(dtypes) == 0:
return None
@ -690,9 +690,14 @@ def lanczos(samples, width, height):
return result.to(samples.device, samples.dtype)
def common_upscale(samples, width, height, upscale_method, crop):
orig_shape = tuple(samples.shape)
if len(orig_shape) > 4:
samples = samples.reshape(samples.shape[0], samples.shape[1], -1, samples.shape[-2], samples.shape[-1])
samples = samples.movedim(2, 1)
samples = samples.reshape(-1, orig_shape[1], orig_shape[-2], orig_shape[-1])
if crop == "center":
old_width = samples.shape[3]
old_height = samples.shape[2]
old_width = samples.shape[-1]
old_height = samples.shape[-2]
old_aspect = old_width / old_height
new_aspect = width / height
x = 0
@ -701,16 +706,22 @@ def common_upscale(samples, width, height, upscale_method, crop):
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
elif old_aspect < new_aspect:
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
s = samples[:,:,y:old_height-y,x:old_width-x]
s = samples.narrow(-2, y, old_height - y * 2).narrow(-1, x, old_width - x * 2)
else:
s = samples
if upscale_method == "bislerp":
return bislerp(s, width, height)
out = bislerp(s, width, height)
elif upscale_method == "lanczos":
return lanczos(s, width, height)
out = lanczos(s, width, height)
else:
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
out = torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
if len(orig_shape) == 4:
return out
out = out.reshape((orig_shape[0], -1, orig_shape[1]) + (height, width))
return out.movedim(2, 1).reshape(orig_shape[:-2] + (height, width))
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
rows = 1 if height <= tile_y else math.ceil((height - overlap) / (tile_y - overlap))
@ -720,7 +731,27 @@ def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
@torch.inference_mode()
def tiled_scale_multidim(samples, function, tile=(64, 64), overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
dims = len(tile)
output = torch.empty([samples.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), samples.shape[2:])), device=output_device)
if not (isinstance(upscale_amount, (tuple, list))):
upscale_amount = [upscale_amount] * dims
if not (isinstance(overlap, (tuple, list))):
overlap = [overlap] * dims
def get_upscale(dim, val):
up = upscale_amount[dim]
if callable(up):
return up(val)
else:
return up * val
def mult_list_upscale(a):
out = []
for i in range(len(a)):
out.append(round(get_upscale(i, a[i])))
return out
output = torch.empty([samples.shape[0], out_channels] + mult_list_upscale(samples.shape[2:]), device=output_device)
for b in range(samples.shape[0]):
s = samples[b:b+1]
@ -732,27 +763,27 @@ def tiled_scale_multidim(samples, function, tile=(64, 64), overlap = 8, upscale_
pbar.update(1)
continue
out = torch.zeros([s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])), device=output_device)
out_div = torch.zeros([s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])), device=output_device)
out = torch.zeros([s.shape[0], out_channels] + mult_list_upscale(s.shape[2:]), device=output_device)
out_div = torch.zeros([s.shape[0], out_channels] + mult_list_upscale(s.shape[2:]), device=output_device)
positions = [range(0, s.shape[d+2], tile[d] - overlap) if s.shape[d+2] > tile[d] else [0] for d in range(dims)]
positions = [range(0, s.shape[d+2], tile[d] - overlap[d]) if s.shape[d+2] > tile[d] else [0] for d in range(dims)]
for it in itertools.product(*positions):
s_in = s
upscaled = []
for d in range(dims):
pos = max(0, min(s.shape[d + 2] - overlap, it[d]))
pos = max(0, min(s.shape[d + 2] - (overlap[d] + 1), it[d]))
l = min(tile[d], s.shape[d + 2] - pos)
s_in = s_in.narrow(d + 2, pos, l)
upscaled.append(round(pos * upscale_amount))
upscaled.append(round(get_upscale(d, pos)))
ps = function(s_in).to(output_device)
mask = torch.ones_like(ps)
feather = round(overlap * upscale_amount)
for t in range(feather):
for d in range(2, dims + 2):
for d in range(2, dims + 2):
feather = round(get_upscale(d - 2, overlap[d - 2]))
for t in range(feather):
a = (t + 1) / feather
mask.narrow(d, t, 1).mul_(a)
mask.narrow(d, mask.shape[d] - 1 - t, 1).mul_(a)

View File

@ -1,4 +1,5 @@
import comfy.utils
import comfy_extras.nodes_post_processing
import torch
def reshape_latent_to(target_shape, latent):
@ -145,6 +146,131 @@ class LatentBatchSeedBehavior:
return (samples_out,)
class LatentApplyOperation:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"operation": ("LATENT_OPERATION",),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced/operations"
EXPERIMENTAL = True
def op(self, samples, operation):
samples_out = samples.copy()
s1 = samples["samples"]
samples_out["samples"] = operation(latent=s1)
return (samples_out,)
class LatentApplyOperationCFG:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"operation": ("LATENT_OPERATION",),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "latent/advanced/operations"
EXPERIMENTAL = True
def patch(self, model, operation):
m = model.clone()
def pre_cfg_function(args):
conds_out = args["conds_out"]
if len(conds_out) == 2:
conds_out[0] = operation(latent=(conds_out[0] - conds_out[1])) + conds_out[1]
else:
conds_out[0] = operation(latent=conds_out[0])
return conds_out
m.set_model_sampler_pre_cfg_function(pre_cfg_function)
return (m, )
class LatentOperationTonemapReinhard:
@classmethod
def INPUT_TYPES(s):
return {"required": { "multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
}}
RETURN_TYPES = ("LATENT_OPERATION",)
FUNCTION = "op"
CATEGORY = "latent/advanced/operations"
EXPERIMENTAL = True
def op(self, multiplier):
def tonemap_reinhard(latent, **kwargs):
latent_vector_magnitude = (torch.linalg.vector_norm(latent, dim=(1)) + 0.0000000001)[:,None]
normalized_latent = latent / latent_vector_magnitude
mean = torch.mean(latent_vector_magnitude, dim=(1,2,3), keepdim=True)
std = torch.std(latent_vector_magnitude, dim=(1,2,3), keepdim=True)
top = (std * 5 + mean) * multiplier
#reinhard
latent_vector_magnitude *= (1.0 / top)
new_magnitude = latent_vector_magnitude / (latent_vector_magnitude + 1.0)
new_magnitude *= top
return normalized_latent * new_magnitude
return (tonemap_reinhard,)
class LatentOperationSharpen:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"sharpen_radius": ("INT", {
"default": 9,
"min": 1,
"max": 31,
"step": 1
}),
"sigma": ("FLOAT", {
"default": 1.0,
"min": 0.1,
"max": 10.0,
"step": 0.1
}),
"alpha": ("FLOAT", {
"default": 0.1,
"min": 0.0,
"max": 5.0,
"step": 0.01
}),
}}
RETURN_TYPES = ("LATENT_OPERATION",)
FUNCTION = "op"
CATEGORY = "latent/advanced/operations"
EXPERIMENTAL = True
def op(self, sharpen_radius, sigma, alpha):
def sharpen(latent, **kwargs):
luminance = (torch.linalg.vector_norm(latent, dim=(1)) + 1e-6)[:,None]
normalized_latent = latent / luminance
channels = latent.shape[1]
kernel_size = sharpen_radius * 2 + 1
kernel = comfy_extras.nodes_post_processing.gaussian_kernel(kernel_size, sigma, device=luminance.device)
center = kernel_size // 2
kernel *= alpha * -10
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
padded_image = torch.nn.functional.pad(normalized_latent, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
sharpened = torch.nn.functional.conv2d(padded_image, kernel.repeat(channels, 1, 1).unsqueeze(1), padding=kernel_size // 2, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
return luminance * sharpened
return (sharpen,)
NODE_CLASS_MAPPINGS = {
"LatentAdd": LatentAdd,
"LatentSubtract": LatentSubtract,
@ -152,4 +278,8 @@ NODE_CLASS_MAPPINGS = {
"LatentInterpolate": LatentInterpolate,
"LatentBatch": LatentBatch,
"LatentBatchSeedBehavior": LatentBatchSeedBehavior,
"LatentApplyOperation": LatentApplyOperation,
"LatentApplyOperationCFG": LatentApplyOperationCFG,
"LatentOperationTonemapReinhard": LatentOperationTonemapReinhard,
"LatentOperationSharpen": LatentOperationSharpen,
}

View File

@ -82,8 +82,8 @@ class LoraSave:
"lora_type": (tuple(LORA_TYPES.keys()),),
"bias_diff": ("BOOLEAN", {"default": True}),
},
"optional": {"model_diff": ("MODEL",),
"text_encoder_diff": ("CLIP",)},
"optional": {"model_diff": ("MODEL", {"tooltip": "The ModelSubtract output to be converted to a lora."}),
"text_encoder_diff": ("CLIP", {"tooltip": "The CLIPSubtract output to be converted to a lora."})},
}
RETURN_TYPES = ()
FUNCTION = "save"
@ -113,3 +113,7 @@ class LoraSave:
NODE_CLASS_MAPPINGS = {
"LoraSave": LoraSave
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LoraSave": "Extract and Save Lora"
}

View File

@ -0,0 +1,26 @@
import nodes
import torch
import comfy.model_management
class EmptyMochiLatentVideo:
def __init__(self):
self.device = comfy.model_management.intermediate_device()
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 848, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 25, "min": 7, "max": nodes.MAX_RESOLUTION, "step": 6}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/mochi"
def generate(self, width, height, length, batch_size=1):
latent = torch.zeros([batch_size, 12, ((length - 1) // 6) + 1, height // 8, width // 8], device=self.device)
return ({"samples":latent}, )
NODE_CLASS_MAPPINGS = {
"EmptyMochiLatentVideo": EmptyMochiLatentVideo,
}

View File

@ -101,10 +101,34 @@ class ModelMergeFlux1(comfy_extras.nodes_model_merging.ModelMergeBlocks):
return {"required": arg_dict}
class ModelMergeSD35_Large(comfy_extras.nodes_model_merging.ModelMergeBlocks):
CATEGORY = "advanced/model_merging/model_specific"
@classmethod
def INPUT_TYPES(s):
arg_dict = { "model1": ("MODEL",),
"model2": ("MODEL",)}
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
arg_dict["pos_embed."] = argument
arg_dict["x_embedder."] = argument
arg_dict["context_embedder."] = argument
arg_dict["y_embedder."] = argument
arg_dict["t_embedder."] = argument
for i in range(38):
arg_dict["joint_blocks.{}.".format(i)] = argument
arg_dict["final_layer."] = argument
return {"required": arg_dict}
NODE_CLASS_MAPPINGS = {
"ModelMergeSD1": ModelMergeSD1,
"ModelMergeSD2": ModelMergeSD1, #SD1 and SD2 have the same blocks
"ModelMergeSDXL": ModelMergeSDXL,
"ModelMergeSD3_2B": ModelMergeSD3_2B,
"ModelMergeFlux1": ModelMergeFlux1,
"ModelMergeSD35_Large": ModelMergeSD35_Large,
}

View File

@ -3,7 +3,7 @@ import comfy.sd
import comfy.model_management
import nodes
import torch
import re
class TripleCLIPLoader:
@classmethod
def INPUT_TYPES(s):
@ -95,11 +95,70 @@ class ControlNetApplySD3(nodes.ControlNetApplyAdvanced):
CATEGORY = "conditioning/controlnet"
DEPRECATED = True
class SkipLayerGuidanceSD3:
'''
Enhance guidance towards detailed dtructure by having another set of CFG negative with skipped layers.
Inspired by Perturbed Attention Guidance (https://arxiv.org/abs/2403.17377)
Experimental implementation by Dango233@StabilityAI.
'''
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL", ),
"layers": ("STRING", {"default": "7, 8, 9", "multiline": False}),
"scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.1}),
"start_percent": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001})
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "skip_guidance"
CATEGORY = "advanced/guidance"
def skip_guidance(self, model, layers, scale, start_percent, end_percent):
if layers == "" or layers == None:
return (model, )
# check if layer is comma separated integers
def skip(args, extra_args):
return args
model_sampling = model.get_model_object("model_sampling")
sigma_start = model_sampling.percent_to_sigma(start_percent)
sigma_end = model_sampling.percent_to_sigma(end_percent)
def post_cfg_function(args):
model = args["model"]
cond_pred = args["cond_denoised"]
cond = args["cond"]
cfg_result = args["denoised"]
sigma = args["sigma"]
x = args["input"]
model_options = args["model_options"].copy()
for layer in layers:
model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, skip, "dit", "double_block", layer)
model_sampling.percent_to_sigma(start_percent)
sigma_ = sigma[0].item()
if scale > 0 and sigma_ >= sigma_end and sigma_ <= sigma_start:
(slg,) = comfy.samplers.calc_cond_batch(model, [cond], x, sigma, model_options)
cfg_result = cfg_result + (cond_pred - slg) * scale
return cfg_result
layers = re.findall(r'\d+', layers)
layers = [int(i) for i in layers]
m = model.clone()
m.set_model_sampler_post_cfg_function(post_cfg_function)
return (m, )
NODE_CLASS_MAPPINGS = {
"TripleCLIPLoader": TripleCLIPLoader,
"EmptySD3LatentImage": EmptySD3LatentImage,
"CLIPTextEncodeSD3": CLIPTextEncodeSD3,
"ControlNetApplySD3": ControlNetApplySD3,
"SkipLayerGuidanceSD3": SkipLayerGuidanceSD3,
}
NODE_DISPLAY_NAME_MAPPINGS = {

View File

@ -281,7 +281,10 @@ class VAEDecode:
DESCRIPTION = "Decodes latent images back into pixel space images."
def decode(self, vae, samples):
return (vae.decode(samples["samples"]), )
images = vae.decode(samples["samples"])
if len(images.shape) == 5: #Combine batches
images = images.reshape(-1, images.shape[-3], images.shape[-2], images.shape[-1])
return (images, )
class VAEDecodeTiled:
@classmethod
@ -886,7 +889,7 @@ class CLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio"], ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi"], ),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
@ -900,6 +903,8 @@ class CLIPLoader:
clip_type = comfy.sd.CLIPType.SD3
elif type == "stable_audio":
clip_type = comfy.sd.CLIPType.STABLE_AUDIO
elif type == "mochi":
clip_type = comfy.sd.CLIPType.MOCHI
else:
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
@ -1179,10 +1184,10 @@ class LatentUpscale:
if width == 0:
height = max(64, height)
width = max(64, round(samples["samples"].shape[3] * height / samples["samples"].shape[2]))
width = max(64, round(samples["samples"].shape[-1] * height / samples["samples"].shape[-2]))
elif height == 0:
width = max(64, width)
height = max(64, round(samples["samples"].shape[2] * width / samples["samples"].shape[3]))
height = max(64, round(samples["samples"].shape[-2] * width / samples["samples"].shape[-1]))
else:
width = max(64, width)
height = max(64, height)
@ -1204,8 +1209,8 @@ class LatentUpscaleBy:
def upscale(self, samples, upscale_method, scale_by):
s = samples.copy()
width = round(samples["samples"].shape[3] * scale_by)
height = round(samples["samples"].shape[2] * scale_by)
width = round(samples["samples"].shape[-1] * scale_by)
height = round(samples["samples"].shape[-2] * scale_by)
s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
return (s,)
@ -2111,6 +2116,7 @@ def init_builtin_extra_nodes():
"nodes_flux.py",
"nodes_lora_extract.py",
"nodes_torch_compile.py",
"nodes_mochi.py",
]
import_failed = []

View File

@ -40,7 +40,7 @@ class BinaryEventTypes:
async def send_socket_catch_exception(function, message):
try:
await function(message)
except (aiohttp.ClientError, aiohttp.ClientPayloadError, ConnectionResetError) as err:
except (aiohttp.ClientError, aiohttp.ClientPayloadError, ConnectionResetError, BrokenPipeError, ConnectionError) as err:
logging.warning("send error: {}".format(err))
def get_comfyui_version():

103
web/assets/ExtensionPanel-DZLYjWBj.js generated vendored Normal file
View File

@ -0,0 +1,103 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, bK as useExtensionStore, u as useSettingStore, r as ref, o as onMounted, q as computed, g as openBlock, h as createElementBlock, i as createVNode, y as withCtx, z as unref, bL as script$1, A as createBaseVNode, x as createBlock, M as Fragment, N as renderList, am as toDisplayString, ap as createTextVNode, j as createCommentVNode, D as script$4 } from "./index-CgU1oKZt.js";
import { s as script, a as script$2, b as script$3 } from "./index-DBWDcZsl.js";
import "./index-DYEEBf64.js";
const _hoisted_1 = { class: "extension-panel" };
const _hoisted_2 = { class: "mt-4" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "ExtensionPanel",
setup(__props) {
const extensionStore = useExtensionStore();
const settingStore = useSettingStore();
const editingEnabledExtensions = ref({});
onMounted(() => {
extensionStore.extensions.forEach((ext) => {
editingEnabledExtensions.value[ext.name] = extensionStore.isExtensionEnabled(ext.name);
});
});
const changedExtensions = computed(() => {
return extensionStore.extensions.filter(
(ext) => editingEnabledExtensions.value[ext.name] !== extensionStore.isExtensionEnabled(ext.name)
);
});
const hasChanges = computed(() => {
return changedExtensions.value.length > 0;
});
const updateExtensionStatus = /* @__PURE__ */ __name(() => {
const editingDisabledExtensionNames = Object.entries(
editingEnabledExtensions.value
).filter(([_, enabled]) => !enabled).map(([name]) => name);
settingStore.set("Comfy.Extension.Disabled", [
...extensionStore.inactiveDisabledExtensionNames,
...editingDisabledExtensionNames
]);
}, "updateExtensionStatus");
const applyChanges = /* @__PURE__ */ __name(() => {
window.location.reload();
}, "applyChanges");
return (_ctx, _cache) => {
return openBlock(), createElementBlock("div", _hoisted_1, [
createVNode(unref(script$2), {
value: unref(extensionStore).extensions,
stripedRows: "",
size: "small"
}, {
default: withCtx(() => [
createVNode(unref(script), {
field: "name",
header: _ctx.$t("extensionName"),
sortable: ""
}, null, 8, ["header"]),
createVNode(unref(script), { pt: {
bodyCell: "flex items-center justify-end"
} }, {
body: withCtx((slotProps) => [
createVNode(unref(script$1), {
modelValue: editingEnabledExtensions.value[slotProps.data.name],
"onUpdate:modelValue": /* @__PURE__ */ __name(($event) => editingEnabledExtensions.value[slotProps.data.name] = $event, "onUpdate:modelValue"),
onChange: updateExtensionStatus
}, null, 8, ["modelValue", "onUpdate:modelValue"])
]),
_: 1
})
]),
_: 1
}, 8, ["value"]),
createBaseVNode("div", _hoisted_2, [
hasChanges.value ? (openBlock(), createBlock(unref(script$3), {
key: 0,
severity: "info"
}, {
default: withCtx(() => [
createBaseVNode("ul", null, [
(openBlock(true), createElementBlock(Fragment, null, renderList(changedExtensions.value, (ext) => {
return openBlock(), createElementBlock("li", {
key: ext.name
}, [
createBaseVNode("span", null, toDisplayString(unref(extensionStore).isExtensionEnabled(ext.name) ? "[-]" : "[+]"), 1),
createTextVNode(" " + toDisplayString(ext.name), 1)
]);
}), 128))
])
]),
_: 1
})) : createCommentVNode("", true),
createVNode(unref(script$4), {
label: _ctx.$t("reloadToApplyChanges"),
icon: "pi pi-refresh",
onClick: applyChanges,
disabled: !hasChanges.value,
text: "",
fluid: "",
severity: "danger"
}, null, 8, ["label", "disabled"])
])
]);
};
}
});
export {
_sfc_main as default
};
//# sourceMappingURL=ExtensionPanel-DZLYjWBj.js.map

1
web/assets/ExtensionPanel-DZLYjWBj.js.map generated vendored Normal file
View File

@ -0,0 +1 @@
{"version":3,"file":"ExtensionPanel-DZLYjWBj.js","sources":["../../src/components/dialog/content/setting/ExtensionPanel.vue"],"sourcesContent":["<template>\n <div class=\"extension-panel\">\n <DataTable :value=\"extensionStore.extensions\" stripedRows size=\"small\">\n <Column field=\"name\" :header=\"$t('extensionName')\" sortable></Column>\n <Column\n :pt=\"{\n bodyCell: 'flex items-center justify-end'\n }\"\n >\n <template #body=\"slotProps\">\n <ToggleSwitch\n v-model=\"editingEnabledExtensions[slotProps.data.name]\"\n @change=\"updateExtensionStatus\"\n />\n </template>\n </Column>\n </DataTable>\n <div class=\"mt-4\">\n <Message v-if=\"hasChanges\" severity=\"info\">\n <ul>\n <li v-for=\"ext in changedExtensions\" :key=\"ext.name\">\n <span>\n {{ extensionStore.isExtensionEnabled(ext.name) ? '[-]' : '[+]' }}\n </span>\n {{ ext.name }}\n </li>\n </ul>\n </Message>\n <Button\n :label=\"$t('reloadToApplyChanges')\"\n icon=\"pi pi-refresh\"\n @click=\"applyChanges\"\n :disabled=\"!hasChanges\"\n text\n fluid\n severity=\"danger\"\n />\n </div>\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport { ref, computed, onMounted } from 'vue'\nimport { useExtensionStore } from '@/stores/extensionStore'\nimport { useSettingStore } from '@/stores/settingStore'\nimport DataTable from 'primevue/datatable'\nimport Column from 'primevue/column'\nimport ToggleSwitch from 'primevue/toggleswitch'\nimport Button from 'primevue/button'\nimport Message from 'primevue/message'\n\nconst extensionStore = useExtensionStore()\nconst settingStore = useSettingStore()\n\nconst editingEnabledExtensions = ref<Record<string, boolean>>({})\n\nonMounted(() => {\n extensionStore.extensions.forEach((ext) => {\n editingEnabledExtensions.value[ext.name] =\n extensionStore.isExtensionEnabled(ext.name)\n })\n})\n\nconst changedExtensions = computed(() => {\n return extensionStore.extensions.filter(\n (ext) =>\n editingEnabledExtensions.value[ext.name] !==\n extensionStore.isExtensionEnabled(ext.name)\n )\n})\n\nconst hasChanges = computed(() => {\n return changedExtensions.value.length > 0\n})\n\nconst updateExtensionStatus = () => {\n const editingDisabledExtensionNames = Object.entries(\n editingEnabledExtensions.value\n )\n .filter(([_, enabled]) => !enabled)\n .map(([name]) => name)\n\n settingStore.set('Comfy.Extension.Disabled', [\n ...extensionStore.inactiveDisabledExtensionNames,\n ...editingDisabledExtensionNames\n ])\n}\n\nconst applyChanges = () => {\n // Refresh the page to apply changes\n window.location.reload()\n}\n</script>\n"],"names":[],"mappings":";;;;;;;;;;AAmDA,UAAM,iBAAiB;AACvB,UAAM,eAAe;AAEf,UAAA,2BAA2B,IAA6B,CAAA,CAAE;AAEhE,cAAU,MAAM;AACC,qBAAA,WAAW,QAAQ,CAAC,QAAQ;AACzC,iCAAyB,MAAM,IAAI,IAAI,IACrC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAAA,CAC7C;AAAA,IAAA,CACF;AAEK,UAAA,oBAAoB,SAAS,MAAM;AACvC,aAAO,eAAe,WAAW;AAAA,QAC/B,CAAC,QACC,yBAAyB,MAAM,IAAI,IAAI,MACvC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAAA;AAAA,IAC9C,CACD;AAEK,UAAA,aAAa,SAAS,MAAM;AACzB,aAAA,kBAAkB,MAAM,SAAS;AAAA,IAAA,CACzC;AAED,UAAM,wBAAwB,6BAAM;AAClC,YAAM,gCAAgC,OAAO;AAAA,QAC3C,yBAAyB;AAAA,MAExB,EAAA,OAAO,CAAC,CAAC,GAAG,OAAO,MAAM,CAAC,OAAO,EACjC,IAAI,CAAC,CAAC,IAAI,MAAM,IAAI;AAEvB,mBAAa,IAAI,4BAA4B;AAAA,QAC3C,GAAG,eAAe;AAAA,QAClB,GAAG;AAAA,MAAA,CACJ;AAAA,IAAA,GAV2B;AAa9B,UAAM,eAAe,6BAAM;AAEzB,aAAO,SAAS;IAAO,GAFJ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}

792
web/assets/GraphView-BGt8GmeB.css generated vendored
View File

@ -1,792 +0,0 @@
.editable-text[data-v-54da6fc9] {
display: inline;
}
.editable-text input[data-v-54da6fc9] {
width: 100%;
box-sizing: border-box;
}
.group-title-editor.node-title-editor[data-v-fc3f26e3] {
z-index: 9999;
padding: 0.25rem;
}
[data-v-fc3f26e3] .editable-text {
width: 100%;
height: 100%;
}
[data-v-fc3f26e3] .editable-text input {
width: 100%;
height: 100%;
/* Override the default font size */
font-size: inherit;
}
.side-bar-button-icon {
font-size: var(--sidebar-icon-size) !important;
}
.side-bar-button-selected .side-bar-button-icon {
font-size: var(--sidebar-icon-size) !important;
font-weight: bold;
}
.side-bar-button[data-v-caa3ee9c] {
width: var(--sidebar-width);
height: var(--sidebar-width);
border-radius: 0;
}
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-caa3ee9c],
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-caa3ee9c]:hover {
border-left: 4px solid var(--p-button-text-primary-color);
}
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-caa3ee9c],
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-caa3ee9c]:hover {
border-right: 4px solid var(--p-button-text-primary-color);
}
:root {
--sidebar-width: 64px;
--sidebar-icon-size: 1.5rem;
}
:root .small-sidebar {
--sidebar-width: 40px;
--sidebar-icon-size: 1rem;
}
.side-tool-bar-container[data-v-4da64512] {
display: flex;
flex-direction: column;
align-items: center;
pointer-events: auto;
width: var(--sidebar-width);
height: 100%;
background-color: var(--comfy-menu-bg);
color: var(--fg-color);
}
.side-tool-bar-end[data-v-4da64512] {
align-self: flex-end;
margin-top: auto;
}
.sidebar-content-container[data-v-4da64512] {
height: 100%;
overflow-y: auto;
}
.p-splitter-gutter {
pointer-events: auto;
}
.gutter-hidden {
display: none !important;
}
.side-bar-panel[data-v-b9df3042] {
background-color: var(--bg-color);
pointer-events: auto;
}
.splitter-overlay[data-v-b9df3042] {
width: 100%;
height: 100%;
position: absolute;
top: 0;
left: 0;
background-color: transparent;
pointer-events: none;
/* Set it the same as the ComfyUI menu */
/* Note: Lite-graph DOM widgets have the same z-index as the node id, so
999 should be sufficient to make sure splitter overlays on node's DOM
widgets */
z-index: 999;
border: none;
}
._content[data-v-e7b35fd9] {
display: flex;
flex-direction: column
}
._content[data-v-e7b35fd9] > :not([hidden]) ~ :not([hidden]) {
--tw-space-y-reverse: 0;
margin-top: calc(0.5rem * calc(1 - var(--tw-space-y-reverse)));
margin-bottom: calc(0.5rem * var(--tw-space-y-reverse))
}
._footer[data-v-e7b35fd9] {
display: flex;
flex-direction: column;
align-items: flex-end;
padding-top: 1rem
}
[data-v-37f672ab] .highlight {
background-color: var(--p-primary-color);
color: var(--p-primary-contrast-color);
font-weight: bold;
border-radius: 0.25rem;
padding: 0rem 0.125rem;
margin: -0.125rem 0.125rem;
}
.slot_row[data-v-ff07c900] {
padding: 2px;
}
/* Original N-Sidebar styles */
._sb_dot[data-v-ff07c900] {
width: 8px;
height: 8px;
border-radius: 50%;
background-color: grey;
}
.node_header[data-v-ff07c900] {
line-height: 1;
padding: 8px 13px 7px;
margin-bottom: 5px;
font-size: 15px;
text-wrap: nowrap;
overflow: hidden;
display: flex;
align-items: center;
}
.headdot[data-v-ff07c900] {
width: 10px;
height: 10px;
float: inline-start;
margin-right: 8px;
}
.IMAGE[data-v-ff07c900] {
background-color: #64b5f6;
}
.VAE[data-v-ff07c900] {
background-color: #ff6e6e;
}
.LATENT[data-v-ff07c900] {
background-color: #ff9cf9;
}
.MASK[data-v-ff07c900] {
background-color: #81c784;
}
.CONDITIONING[data-v-ff07c900] {
background-color: #ffa931;
}
.CLIP[data-v-ff07c900] {
background-color: #ffd500;
}
.MODEL[data-v-ff07c900] {
background-color: #b39ddb;
}
.CONTROL_NET[data-v-ff07c900] {
background-color: #a5d6a7;
}
._sb_node_preview[data-v-ff07c900] {
background-color: var(--comfy-menu-bg);
font-family: 'Open Sans', sans-serif;
font-size: small;
color: var(--descrip-text);
border: 1px solid var(--descrip-text);
min-width: 300px;
width: -moz-min-content;
width: min-content;
height: -moz-fit-content;
height: fit-content;
z-index: 9999;
border-radius: 12px;
overflow: hidden;
font-size: 12px;
padding-bottom: 10px;
}
._sb_node_preview ._sb_description[data-v-ff07c900] {
margin: 10px;
padding: 6px;
background: var(--border-color);
border-radius: 5px;
font-style: italic;
font-weight: 500;
font-size: 0.9rem;
word-break: break-word;
}
._sb_table[data-v-ff07c900] {
display: grid;
grid-column-gap: 10px;
/* Spazio tra le colonne */
width: 100%;
/* Imposta la larghezza della tabella al 100% del contenitore */
}
._sb_row[data-v-ff07c900] {
display: grid;
grid-template-columns: 10px 1fr 1fr 1fr 10px;
grid-column-gap: 10px;
align-items: center;
padding-left: 9px;
padding-right: 9px;
}
._sb_row_string[data-v-ff07c900] {
grid-template-columns: 10px 1fr 1fr 10fr 1fr;
}
._sb_col[data-v-ff07c900] {
border: 0px solid #000;
display: flex;
align-items: flex-end;
flex-direction: row-reverse;
flex-wrap: nowrap;
align-content: flex-start;
justify-content: flex-end;
}
._sb_inherit[data-v-ff07c900] {
display: inherit;
}
._long_field[data-v-ff07c900] {
background: var(--bg-color);
border: 2px solid var(--border-color);
margin: 5px 5px 0 5px;
border-radius: 10px;
line-height: 1.7;
text-wrap: nowrap;
}
._sb_arrow[data-v-ff07c900] {
color: var(--fg-color);
}
._sb_preview_badge[data-v-ff07c900] {
text-align: center;
background: var(--comfy-input-bg);
font-weight: bold;
color: var(--error-text);
}
.comfy-vue-node-search-container[data-v-2d409367] {
display: flex;
width: 100%;
min-width: 26rem;
align-items: center;
justify-content: center;
}
.comfy-vue-node-search-container[data-v-2d409367] * {
pointer-events: auto;
}
.comfy-vue-node-preview-container[data-v-2d409367] {
position: absolute;
left: -350px;
top: 50px;
}
.comfy-vue-node-search-box[data-v-2d409367] {
z-index: 10;
flex-grow: 1;
}
._filter-button[data-v-2d409367] {
z-index: 10;
}
._dialog[data-v-2d409367] {
min-width: 26rem;
}
.invisible-dialog-root {
width: 60%;
min-width: 24rem;
max-width: 48rem;
border: 0 !important;
background-color: transparent !important;
margin-top: 25vh;
margin-left: 400px;
}
@media all and (max-width: 768px) {
.invisible-dialog-root {
margin-left: 0px;
}
}
.node-search-box-dialog-mask {
align-items: flex-start !important;
}
.node-tooltip[data-v-0a4402f9] {
background: var(--comfy-input-bg);
border-radius: 5px;
box-shadow: 0 0 5px rgba(0, 0, 0, 0.4);
color: var(--input-text);
font-family: sans-serif;
left: 0;
max-width: 30vw;
padding: 4px 8px;
position: absolute;
top: 0;
transform: translate(5px, calc(-100% - 5px));
white-space: pre-wrap;
z-index: 99999;
}
.p-buttongroup-vertical[data-v-ce8bd6ac] {
display: flex;
flex-direction: column;
border-radius: var(--p-button-border-radius);
overflow: hidden;
border: 1px solid var(--p-panel-border-color);
}
.p-buttongroup-vertical .p-button[data-v-ce8bd6ac] {
margin: 0;
border-radius: 0;
}
.comfy-image-wrap[data-v-9bc23daf] {
display: contents;
}
.comfy-image-blur[data-v-9bc23daf] {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
-o-object-fit: cover;
object-fit: cover;
}
.comfy-image-main[data-v-9bc23daf] {
width: 100%;
height: 100%;
-o-object-fit: cover;
object-fit: cover;
-o-object-position: center;
object-position: center;
z-index: 1;
}
.contain .comfy-image-wrap[data-v-9bc23daf] {
position: relative;
width: 100%;
height: 100%;
}
.contain .comfy-image-main[data-v-9bc23daf] {
-o-object-fit: contain;
object-fit: contain;
-webkit-backdrop-filter: blur(10px);
backdrop-filter: blur(10px);
position: absolute;
}
.broken-image-placeholder[data-v-9bc23daf] {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
width: 100%;
height: 100%;
margin: 2rem;
}
.broken-image-placeholder i[data-v-9bc23daf] {
font-size: 3rem;
margin-bottom: 0.5rem;
}
.result-container[data-v-d9c060ae] {
width: 100%;
height: 100%;
aspect-ratio: 1 / 1;
overflow: hidden;
position: relative;
display: flex;
justify-content: center;
align-items: center;
}
.image-preview-mask[data-v-d9c060ae] {
position: absolute;
left: 50%;
top: 50%;
transform: translate(-50%, -50%);
display: flex;
align-items: center;
justify-content: center;
opacity: 0;
transition: opacity 0.3s ease;
z-index: 1;
}
.result-container:hover .image-preview-mask[data-v-d9c060ae] {
opacity: 1;
}
.task-result-preview[data-v-d4c8a1fe] {
aspect-ratio: 1 / 1;
overflow: hidden;
display: flex;
justify-content: center;
align-items: center;
width: 100%;
height: 100%;
}
.task-result-preview i[data-v-d4c8a1fe],
.task-result-preview span[data-v-d4c8a1fe] {
font-size: 2rem;
}
.task-item[data-v-d4c8a1fe] {
display: flex;
flex-direction: column;
border-radius: 4px;
overflow: hidden;
position: relative;
}
.task-item-details[data-v-d4c8a1fe] {
position: absolute;
bottom: 0;
padding: 0.6rem;
display: flex;
justify-content: space-between;
align-items: center;
width: 100%;
z-index: 1;
}
.task-node-link[data-v-d4c8a1fe] {
padding: 2px;
}
/* In dark mode, transparent background color for tags is not ideal for tags that
are floating on top of images. */
.tag-wrapper[data-v-d4c8a1fe] {
background-color: var(--p-primary-contrast-color);
border-radius: 6px;
display: inline-flex;
}
.node-name-tag[data-v-d4c8a1fe] {
word-break: break-all;
}
.status-tag-group[data-v-d4c8a1fe] {
display: flex;
flex-direction: column;
}
.progress-preview-img[data-v-d4c8a1fe] {
width: 100%;
height: 100%;
-o-object-fit: cover;
object-fit: cover;
-o-object-position: center;
object-position: center;
}
/* PrimeVue's galleria teleports the fullscreen gallery out of subtree so we
cannot use scoped style here. */
img.galleria-image {
max-width: 100vw;
max-height: 100vh;
-o-object-fit: contain;
object-fit: contain;
}
.p-galleria-close-button {
/* Set z-index so the close button doesn't get hidden behind the image when image is large */
z-index: 1;
}
.comfy-vue-side-bar-container[data-v-1b0a8fe3] {
display: flex;
flex-direction: column;
height: 100%;
overflow: hidden;
}
.comfy-vue-side-bar-header[data-v-1b0a8fe3] {
flex-shrink: 0;
border-left: none;
border-right: none;
border-top: none;
border-radius: 0;
padding: 0.25rem 1rem;
min-height: 2.5rem;
}
.comfy-vue-side-bar-header-span[data-v-1b0a8fe3] {
font-size: small;
}
.comfy-vue-side-bar-body[data-v-1b0a8fe3] {
flex-grow: 1;
overflow: auto;
scrollbar-width: thin;
scrollbar-color: transparent transparent;
}
.comfy-vue-side-bar-body[data-v-1b0a8fe3]::-webkit-scrollbar {
width: 1px;
}
.comfy-vue-side-bar-body[data-v-1b0a8fe3]::-webkit-scrollbar-thumb {
background-color: transparent;
}
.scroll-container[data-v-08fa89b1] {
height: 100%;
overflow-y: auto;
}
.queue-grid[data-v-08fa89b1] {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
padding: 0.5rem;
gap: 0.5rem;
}
.tree-node[data-v-633e27ab] {
width: 100%;
display: flex;
align-items: center;
justify-content: space-between;
}
.leaf-count-badge[data-v-633e27ab] {
margin-left: 0.5rem;
}
.node-content[data-v-633e27ab] {
display: flex;
align-items: center;
flex-grow: 1;
}
.leaf-label[data-v-633e27ab] {
margin-left: 0.5rem;
}
[data-v-633e27ab] .editable-text span {
word-break: break-all;
}
[data-v-bd7bae90] .tree-explorer-node-label {
width: 100%;
display: flex;
align-items: center;
margin-left: var(--p-tree-node-gap);
flex-grow: 1;
}
/*
* The following styles are necessary to avoid layout shift when dragging nodes over folders.
* By setting the position to relative on the parent and using an absolutely positioned pseudo-element,
* we can create a visual indicator for the drop target without affecting the layout of other elements.
*/
[data-v-bd7bae90] .p-tree-node-content:has(.tree-folder) {
position: relative;
}
[data-v-bd7bae90] .p-tree-node-content:has(.tree-folder.can-drop)::after {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
border: 1px solid var(--p-content-color);
pointer-events: none;
}
.node-lib-node-container[data-v-90dfee08] {
height: 100%;
width: 100%
}
.p-selectbutton .p-button[data-v-91077f2a] {
padding: 0.5rem;
}
.p-selectbutton .p-button .pi[data-v-91077f2a] {
font-size: 1.5rem;
}
.field[data-v-91077f2a] {
display: flex;
flex-direction: column;
gap: 0.5rem;
}
.color-picker-container[data-v-91077f2a] {
display: flex;
align-items: center;
gap: 0.5rem;
}
.node-lib-filter-popup {
margin-left: -13px;
}
[data-v-f6a7371a] .comfy-vue-side-bar-body {
background: var(--p-tree-background);
}
[data-v-f6a7371a] .node-lib-bookmark-tree-explorer {
padding-bottom: 2px;
}
[data-v-f6a7371a] .p-divider {
margin: var(--comfy-tree-explorer-item-padding) 0px;
}
.model_preview[data-v-32e6c4d9] {
background-color: var(--comfy-menu-bg);
font-family: 'Open Sans', sans-serif;
color: var(--descrip-text);
border: 1px solid var(--descrip-text);
min-width: 300px;
max-width: 500px;
width: -moz-fit-content;
width: fit-content;
height: -moz-fit-content;
height: fit-content;
z-index: 9999;
border-radius: 12px;
overflow: hidden;
font-size: 12px;
padding: 10px;
}
.model_preview_image[data-v-32e6c4d9] {
margin: auto;
width: -moz-fit-content;
width: fit-content;
}
.model_preview_image img[data-v-32e6c4d9] {
max-width: 100%;
max-height: 150px;
-o-object-fit: contain;
object-fit: contain;
}
.model_preview_title[data-v-32e6c4d9] {
font-weight: bold;
text-align: center;
font-size: 14px;
}
.model_preview_top_container[data-v-32e6c4d9] {
text-align: center;
line-height: 0.5;
}
.model_preview_filename[data-v-32e6c4d9],
.model_preview_author[data-v-32e6c4d9],
.model_preview_architecture[data-v-32e6c4d9] {
display: inline-block;
text-align: center;
margin: 5px;
font-size: 10px;
}
.model_preview_prefix[data-v-32e6c4d9] {
font-weight: bold;
}
.model-lib-model-icon-container[data-v-70b69131] {
display: inline-block;
position: relative;
left: 0;
height: 1.5rem;
vertical-align: top;
width: 0px;
}
.model-lib-model-icon[data-v-70b69131] {
background-size: cover;
background-position: center;
display: inline-block;
position: relative;
left: -2.5rem;
height: 2rem;
width: 2rem;
vertical-align: top;
}
.pi-fake-spacer {
height: 1px;
width: 16px;
}
[data-v-74b01bce] .comfy-vue-side-bar-body {
background: var(--p-tree-background);
}
[data-v-d2d58252] .comfy-vue-side-bar-body {
background: var(--p-tree-background);
}
[data-v-84e785b8] .p-togglebutton::before {
display: none
}
[data-v-84e785b8] .p-togglebutton {
position: relative;
flex-shrink: 0;
border-radius: 0px;
background-color: transparent;
padding-left: 0.5rem;
padding-right: 0.5rem
}
[data-v-84e785b8] .p-togglebutton.p-togglebutton-checked {
border-bottom-width: 2px;
border-bottom-color: var(--p-button-text-primary-color)
}
[data-v-84e785b8] .p-togglebutton-checked .close-button,[data-v-84e785b8] .p-togglebutton:hover .close-button {
visibility: visible
}
.status-indicator[data-v-84e785b8] {
position: absolute;
font-weight: 700;
font-size: 1.5rem;
top: 50%;
left: 50%;
transform: translate(-50%, -50%)
}
[data-v-84e785b8] .p-togglebutton:hover .status-indicator {
display: none
}
[data-v-84e785b8] .p-togglebutton .close-button {
visibility: hidden
}
.top-menubar[data-v-2ec1b620] .p-menubar-item-link svg {
display: none;
}
[data-v-2ec1b620] .p-menubar-submenu.dropdown-direction-up {
top: auto;
bottom: 100%;
flex-direction: column-reverse;
}
.keybinding-tag[data-v-2ec1b620] {
background: var(--p-content-hover-background);
border-color: var(--p-content-border-color);
border-style: solid;
}
[data-v-713442be] .p-inputtext {
border-top-left-radius: 0;
border-bottom-left-radius: 0;
}
.comfyui-queue-button[data-v-fcd3efcd] .p-splitbutton-dropdown {
border-top-right-radius: 0;
border-bottom-right-radius: 0;
}
.actionbar[data-v-bc6c78dd] {
pointer-events: all;
position: fixed;
z-index: 1000;
}
.actionbar.is-docked[data-v-bc6c78dd] {
position: static;
border-style: none;
background-color: transparent;
padding: 0px;
}
.actionbar.is-dragging[data-v-bc6c78dd] {
-webkit-user-select: none;
-moz-user-select: none;
user-select: none;
}
[data-v-bc6c78dd] .p-panel-content {
padding: 0.25rem;
}
[data-v-bc6c78dd] .p-panel-header {
display: none;
}
.comfyui-menu[data-v-b13fdc92] {
width: 100vw;
background: var(--comfy-menu-bg);
color: var(--fg-color);
font-family: Arial, Helvetica, sans-serif;
font-size: 0.8em;
box-sizing: border-box;
z-index: 1000;
order: 0;
grid-column: 1/-1;
max-height: 90vh;
}
.comfyui-menu.dropzone[data-v-b13fdc92] {
background: var(--p-highlight-background);
}
.comfyui-menu.dropzone-active[data-v-b13fdc92] {
background: var(--p-highlight-background-focus);
}
.comfyui-logo[data-v-b13fdc92] {
font-size: 1.2em;
-webkit-user-select: none;
-moz-user-select: none;
user-select: none;
cursor: default;
}

278
web/assets/GraphView-Bx1-rDWO.css generated vendored Normal file
View File

@ -0,0 +1,278 @@
.group-title-editor.node-title-editor[data-v-fc3f26e3] {
z-index: 9999;
padding: 0.25rem;
}
[data-v-fc3f26e3] .editable-text {
width: 100%;
height: 100%;
}
[data-v-fc3f26e3] .editable-text input {
width: 100%;
height: 100%;
/* Override the default font size */
font-size: inherit;
}
.side-bar-button-icon {
font-size: var(--sidebar-icon-size) !important;
}
.side-bar-button-selected .side-bar-button-icon {
font-size: var(--sidebar-icon-size) !important;
font-weight: bold;
}
.side-bar-button[data-v-caa3ee9c] {
width: var(--sidebar-width);
height: var(--sidebar-width);
border-radius: 0;
}
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-caa3ee9c],
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-caa3ee9c]:hover {
border-left: 4px solid var(--p-button-text-primary-color);
}
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-caa3ee9c],
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-caa3ee9c]:hover {
border-right: 4px solid var(--p-button-text-primary-color);
}
:root {
--sidebar-width: 64px;
--sidebar-icon-size: 1.5rem;
}
:root .small-sidebar {
--sidebar-width: 40px;
--sidebar-icon-size: 1rem;
}
.side-tool-bar-container[data-v-b6bfc188] {
display: flex;
flex-direction: column;
align-items: center;
pointer-events: auto;
width: var(--sidebar-width);
height: 100%;
background-color: var(--comfy-menu-bg);
color: var(--fg-color);
}
.side-tool-bar-end[data-v-b6bfc188] {
align-self: flex-end;
margin-top: auto;
}
.p-splitter-gutter {
pointer-events: auto;
}
.gutter-hidden {
display: none !important;
}
.side-bar-panel[data-v-b9df3042] {
background-color: var(--bg-color);
pointer-events: auto;
}
.splitter-overlay[data-v-b9df3042] {
width: 100%;
height: 100%;
position: absolute;
top: 0;
left: 0;
background-color: transparent;
pointer-events: none;
/* Set it the same as the ComfyUI menu */
/* Note: Lite-graph DOM widgets have the same z-index as the node id, so
999 should be sufficient to make sure splitter overlays on node's DOM
widgets */
z-index: 999;
border: none;
}
[data-v-37f672ab] .highlight {
background-color: var(--p-primary-color);
color: var(--p-primary-contrast-color);
font-weight: bold;
border-radius: 0.25rem;
padding: 0rem 0.125rem;
margin: -0.125rem 0.125rem;
}
.comfy-vue-node-search-container[data-v-2d409367] {
display: flex;
width: 100%;
min-width: 26rem;
align-items: center;
justify-content: center;
}
.comfy-vue-node-search-container[data-v-2d409367] * {
pointer-events: auto;
}
.comfy-vue-node-preview-container[data-v-2d409367] {
position: absolute;
left: -350px;
top: 50px;
}
.comfy-vue-node-search-box[data-v-2d409367] {
z-index: 10;
flex-grow: 1;
}
._filter-button[data-v-2d409367] {
z-index: 10;
}
._dialog[data-v-2d409367] {
min-width: 26rem;
}
.invisible-dialog-root {
width: 60%;
min-width: 24rem;
max-width: 48rem;
border: 0 !important;
background-color: transparent !important;
margin-top: 25vh;
margin-left: 400px;
}
@media all and (max-width: 768px) {
.invisible-dialog-root {
margin-left: 0px;
}
}
.node-search-box-dialog-mask {
align-items: flex-start !important;
}
.node-tooltip[data-v-79ec8c53] {
background: var(--comfy-input-bg);
border-radius: 5px;
box-shadow: 0 0 5px rgba(0, 0, 0, 0.4);
color: var(--input-text);
font-family: sans-serif;
left: 0;
max-width: 30vw;
padding: 4px 8px;
position: absolute;
top: 0;
transform: translate(5px, calc(-100% - 5px));
white-space: pre-wrap;
z-index: 99999;
}
.p-buttongroup-vertical[data-v-444d3768] {
display: flex;
flex-direction: column;
border-radius: var(--p-button-border-radius);
overflow: hidden;
border: 1px solid var(--p-panel-border-color);
}
.p-buttongroup-vertical .p-button[data-v-444d3768] {
margin: 0;
border-radius: 0;
}
[data-v-84e785b8] .p-togglebutton::before {
display: none
}
[data-v-84e785b8] .p-togglebutton {
position: relative;
flex-shrink: 0;
border-radius: 0px;
background-color: transparent;
padding-left: 0.5rem;
padding-right: 0.5rem
}
[data-v-84e785b8] .p-togglebutton.p-togglebutton-checked {
border-bottom-width: 2px;
border-bottom-color: var(--p-button-text-primary-color)
}
[data-v-84e785b8] .p-togglebutton-checked .close-button,[data-v-84e785b8] .p-togglebutton:hover .close-button {
visibility: visible
}
.status-indicator[data-v-84e785b8] {
position: absolute;
font-weight: 700;
font-size: 1.5rem;
top: 50%;
left: 50%;
transform: translate(-50%, -50%)
}
[data-v-84e785b8] .p-togglebutton:hover .status-indicator {
display: none
}
[data-v-84e785b8] .p-togglebutton .close-button {
visibility: hidden
}
.top-menubar[data-v-9646ca0a] .p-menubar-item-link svg {
display: none;
}
[data-v-9646ca0a] .p-menubar-submenu.dropdown-direction-up {
top: auto;
bottom: 100%;
flex-direction: column-reverse;
}
.keybinding-tag[data-v-9646ca0a] {
background: var(--p-content-hover-background);
border-color: var(--p-content-border-color);
border-style: solid;
}
[data-v-713442be] .p-inputtext {
border-top-left-radius: 0;
border-bottom-left-radius: 0;
}
.comfyui-queue-button[data-v-2b80bf74] .p-splitbutton-dropdown {
border-top-right-radius: 0;
border-bottom-right-radius: 0;
}
.actionbar[data-v-2e54db00] {
pointer-events: all;
position: fixed;
z-index: 1000;
}
.actionbar.is-docked[data-v-2e54db00] {
position: static;
border-style: none;
background-color: transparent;
padding: 0px;
}
.actionbar.is-dragging[data-v-2e54db00] {
-webkit-user-select: none;
-moz-user-select: none;
user-select: none;
}
[data-v-2e54db00] .p-panel-content {
padding: 0.25rem;
}
[data-v-2e54db00] .p-panel-header {
display: none;
}
.comfyui-menu[data-v-b13fdc92] {
width: 100vw;
background: var(--comfy-menu-bg);
color: var(--fg-color);
font-family: Arial, Helvetica, sans-serif;
font-size: 0.8em;
box-sizing: border-box;
z-index: 1000;
order: 0;
grid-column: 1/-1;
max-height: 90vh;
}
.comfyui-menu.dropzone[data-v-b13fdc92] {
background: var(--p-highlight-background);
}
.comfyui-menu.dropzone-active[data-v-b13fdc92] {
background: var(--p-highlight-background-focus);
}
.comfyui-logo[data-v-b13fdc92] {
font-size: 1.2em;
-webkit-user-select: none;
-moz-user-select: none;
user-select: none;
cursor: default;
}

17465
web/assets/GraphView-CVV2XJjS.js generated vendored

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

7361
web/assets/GraphView-DmeOoKWv.js generated vendored Normal file

File diff suppressed because one or more lines are too long

1
web/assets/GraphView-DmeOoKWv.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

8
web/assets/KeybindingPanel-BNYKhW1k.css generated vendored Normal file
View File

@ -0,0 +1,8 @@
[data-v-e5724e4d] .p-datatable-tbody > tr > td {
padding: 1px;
min-height: 2rem;
}
[data-v-e5724e4d] .p-datatable-row-selected .actions,[data-v-e5724e4d] .p-datatable-selectable-row:hover .actions {
visibility: visible;
}

264
web/assets/KeybindingPanel-YkUFoiMw.js generated vendored Normal file
View File

@ -0,0 +1,264 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, q as computed, g as openBlock, h as createElementBlock, M as Fragment, N as renderList, i as createVNode, y as withCtx, ap as createTextVNode, am as toDisplayString, z as unref, at as script, j as createCommentVNode, r as ref, bH as FilterMatchMode, K as useKeybindingStore, F as useCommandStore, aC as watchEffect, aZ as useToast, t as resolveDirective, bI as SearchBox, A as createBaseVNode, D as script$2, x as createBlock, af as script$4, b2 as withModifiers, aA as script$6, v as withDirectives, P as pushScopeId, Q as popScopeId, by as KeyComboImpl, bJ as KeybindingImpl, _ as _export_sfc } from "./index-CgU1oKZt.js";
import { s as script$1, a as script$3, b as script$5 } from "./index-DBWDcZsl.js";
import "./index-DYEEBf64.js";
const _hoisted_1$1 = {
key: 0,
class: "px-2"
};
const _sfc_main$1 = /* @__PURE__ */ defineComponent({
__name: "KeyComboDisplay",
props: {
keyCombo: {},
isModified: { type: Boolean, default: false }
},
setup(__props) {
const props = __props;
const keySequences = computed(() => props.keyCombo.getKeySequences());
return (_ctx, _cache) => {
return openBlock(), createElementBlock("span", null, [
(openBlock(true), createElementBlock(Fragment, null, renderList(keySequences.value, (sequence, index) => {
return openBlock(), createElementBlock(Fragment, { key: index }, [
createVNode(unref(script), {
severity: _ctx.isModified ? "info" : "secondary"
}, {
default: withCtx(() => [
createTextVNode(toDisplayString(sequence), 1)
]),
_: 2
}, 1032, ["severity"]),
index < keySequences.value.length - 1 ? (openBlock(), createElementBlock("span", _hoisted_1$1, "+")) : createCommentVNode("", true)
], 64);
}), 128))
]);
};
}
});
const _withScopeId = /* @__PURE__ */ __name((n) => (pushScopeId("data-v-e5724e4d"), n = n(), popScopeId(), n), "_withScopeId");
const _hoisted_1 = { class: "keybinding-panel" };
const _hoisted_2 = { class: "actions invisible" };
const _hoisted_3 = { key: 1 };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "KeybindingPanel",
setup(__props) {
const filters = ref({
global: { value: "", matchMode: FilterMatchMode.CONTAINS }
});
const keybindingStore = useKeybindingStore();
const commandStore = useCommandStore();
const commandsData = computed(() => {
return Object.values(commandStore.commands).map((command) => ({
id: command.id,
keybinding: keybindingStore.getKeybindingByCommandId(command.id)
}));
});
const selectedCommandData = ref(null);
const editDialogVisible = ref(false);
const newBindingKeyCombo = ref(null);
const currentEditingCommand = ref(null);
const keybindingInput = ref(null);
const existingKeybindingOnCombo = computed(() => {
if (!currentEditingCommand.value) {
return null;
}
if (currentEditingCommand.value.keybinding?.combo?.equals(
newBindingKeyCombo.value
)) {
return null;
}
if (!newBindingKeyCombo.value) {
return null;
}
return keybindingStore.getKeybinding(newBindingKeyCombo.value);
});
function editKeybinding(commandData) {
currentEditingCommand.value = commandData;
newBindingKeyCombo.value = commandData.keybinding ? commandData.keybinding.combo : null;
editDialogVisible.value = true;
}
__name(editKeybinding, "editKeybinding");
watchEffect(() => {
if (editDialogVisible.value) {
setTimeout(() => {
keybindingInput.value?.$el?.focus();
}, 300);
}
});
function removeKeybinding(commandData) {
if (commandData.keybinding) {
keybindingStore.unsetKeybinding(commandData.keybinding);
keybindingStore.persistUserKeybindings();
}
}
__name(removeKeybinding, "removeKeybinding");
function captureKeybinding(event) {
const keyCombo = KeyComboImpl.fromEvent(event);
newBindingKeyCombo.value = keyCombo;
}
__name(captureKeybinding, "captureKeybinding");
function cancelEdit() {
editDialogVisible.value = false;
currentEditingCommand.value = null;
newBindingKeyCombo.value = null;
}
__name(cancelEdit, "cancelEdit");
function saveKeybinding() {
if (currentEditingCommand.value && newBindingKeyCombo.value) {
const updated = keybindingStore.updateKeybindingOnCommand(
new KeybindingImpl({
commandId: currentEditingCommand.value.id,
combo: newBindingKeyCombo.value
})
);
if (updated) {
keybindingStore.persistUserKeybindings();
}
}
cancelEdit();
}
__name(saveKeybinding, "saveKeybinding");
const toast = useToast();
async function resetKeybindings() {
keybindingStore.resetKeybindings();
await keybindingStore.persistUserKeybindings();
toast.add({
severity: "info",
summary: "Info",
detail: "Keybindings reset",
life: 3e3
});
}
__name(resetKeybindings, "resetKeybindings");
return (_ctx, _cache) => {
const _directive_tooltip = resolveDirective("tooltip");
return openBlock(), createElementBlock("div", _hoisted_1, [
createVNode(unref(script$3), {
value: commandsData.value,
selection: selectedCommandData.value,
"onUpdate:selection": _cache[1] || (_cache[1] = ($event) => selectedCommandData.value = $event),
"global-filter-fields": ["id"],
filters: filters.value,
selectionMode: "single",
stripedRows: "",
pt: {
header: "px-0"
}
}, {
header: withCtx(() => [
createVNode(SearchBox, {
modelValue: filters.value["global"].value,
"onUpdate:modelValue": _cache[0] || (_cache[0] = ($event) => filters.value["global"].value = $event),
placeholder: _ctx.$t("searchKeybindings") + "..."
}, null, 8, ["modelValue", "placeholder"])
]),
default: withCtx(() => [
createVNode(unref(script$1), {
field: "actions",
header: ""
}, {
body: withCtx((slotProps) => [
createBaseVNode("div", _hoisted_2, [
createVNode(unref(script$2), {
icon: "pi pi-pencil",
class: "p-button-text",
onClick: /* @__PURE__ */ __name(($event) => editKeybinding(slotProps.data), "onClick")
}, null, 8, ["onClick"]),
createVNode(unref(script$2), {
icon: "pi pi-trash",
class: "p-button-text p-button-danger",
onClick: /* @__PURE__ */ __name(($event) => removeKeybinding(slotProps.data), "onClick"),
disabled: !slotProps.data.keybinding
}, null, 8, ["onClick", "disabled"])
])
]),
_: 1
}),
createVNode(unref(script$1), {
field: "id",
header: "Command ID",
sortable: ""
}),
createVNode(unref(script$1), {
field: "keybinding",
header: "Keybinding"
}, {
body: withCtx((slotProps) => [
slotProps.data.keybinding ? (openBlock(), createBlock(_sfc_main$1, {
key: 0,
keyCombo: slotProps.data.keybinding.combo,
isModified: unref(keybindingStore).isCommandKeybindingModified(slotProps.data.id)
}, null, 8, ["keyCombo", "isModified"])) : (openBlock(), createElementBlock("span", _hoisted_3, "-"))
]),
_: 1
})
]),
_: 1
}, 8, ["value", "selection", "filters"]),
createVNode(unref(script$6), {
class: "min-w-96",
visible: editDialogVisible.value,
"onUpdate:visible": _cache[2] || (_cache[2] = ($event) => editDialogVisible.value = $event),
modal: "",
header: currentEditingCommand.value?.id,
onHide: cancelEdit
}, {
footer: withCtx(() => [
createVNode(unref(script$2), {
label: "Save",
icon: "pi pi-check",
onClick: saveKeybinding,
disabled: !!existingKeybindingOnCombo.value,
autofocus: ""
}, null, 8, ["disabled"])
]),
default: withCtx(() => [
createBaseVNode("div", null, [
createVNode(unref(script$4), {
class: "mb-2 text-center",
ref_key: "keybindingInput",
ref: keybindingInput,
modelValue: newBindingKeyCombo.value?.toString() ?? "",
placeholder: "Press keys for new binding",
onKeydown: withModifiers(captureKeybinding, ["stop", "prevent"]),
autocomplete: "off",
fluid: "",
invalid: !!existingKeybindingOnCombo.value
}, null, 8, ["modelValue", "invalid"]),
existingKeybindingOnCombo.value ? (openBlock(), createBlock(unref(script$5), {
key: 0,
severity: "error"
}, {
default: withCtx(() => [
createTextVNode(" Keybinding already exists on "),
createVNode(unref(script), {
severity: "secondary",
value: existingKeybindingOnCombo.value.commandId
}, null, 8, ["value"])
]),
_: 1
})) : createCommentVNode("", true)
])
]),
_: 1
}, 8, ["visible", "header"]),
withDirectives(createVNode(unref(script$2), {
class: "mt-4",
label: _ctx.$t("reset"),
icon: "pi pi-trash",
severity: "danger",
fluid: "",
text: "",
onClick: resetKeybindings
}, null, 8, ["label"]), [
[_directive_tooltip, _ctx.$t("resetKeybindingsTooltip")]
])
]);
};
}
});
const KeybindingPanel = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-e5724e4d"]]);
export {
KeybindingPanel as default
};
//# sourceMappingURL=KeybindingPanel-YkUFoiMw.js.map

1
web/assets/KeybindingPanel-YkUFoiMw.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

865
web/assets/colorPalette-D5oi2-2V.js generated vendored
View File

@ -1,865 +0,0 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { k as app, aP as LGraphCanvas, bO as useToastStore, ca as $el, z as LiteGraph } from "./index-DGAbdBYF.js";
const colorPalettes = {
dark: {
id: "dark",
name: "Dark (Default)",
colors: {
node_slot: {
CLIP: "#FFD500",
// bright yellow
CLIP_VISION: "#A8DADC",
// light blue-gray
CLIP_VISION_OUTPUT: "#ad7452",
// rusty brown-orange
CONDITIONING: "#FFA931",
// vibrant orange-yellow
CONTROL_NET: "#6EE7B7",
// soft mint green
IMAGE: "#64B5F6",
// bright sky blue
LATENT: "#FF9CF9",
// light pink-purple
MASK: "#81C784",
// muted green
MODEL: "#B39DDB",
// light lavender-purple
STYLE_MODEL: "#C2FFAE",
// light green-yellow
VAE: "#FF6E6E",
// bright red
NOISE: "#B0B0B0",
// gray
GUIDER: "#66FFFF",
// cyan
SAMPLER: "#ECB4B4",
// very soft red
SIGMAS: "#CDFFCD",
// soft lime green
TAESD: "#DCC274"
// cheesecake
},
litegraph_base: {
BACKGROUND_IMAGE: "",
CLEAR_BACKGROUND_COLOR: "#222",
NODE_TITLE_COLOR: "#999",
NODE_SELECTED_TITLE_COLOR: "#FFF",
NODE_TEXT_SIZE: 14,
NODE_TEXT_COLOR: "#AAA",
NODE_SUBTEXT_SIZE: 12,
NODE_DEFAULT_COLOR: "#333",
NODE_DEFAULT_BGCOLOR: "#353535",
NODE_DEFAULT_BOXCOLOR: "#666",
NODE_DEFAULT_SHAPE: "box",
NODE_BOX_OUTLINE_COLOR: "#FFF",
NODE_BYPASS_BGCOLOR: "#FF00FF",
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)",
DEFAULT_GROUP_FONT: 24,
WIDGET_BGCOLOR: "#222",
WIDGET_OUTLINE_COLOR: "#666",
WIDGET_TEXT_COLOR: "#DDD",
WIDGET_SECONDARY_TEXT_COLOR: "#999",
LINK_COLOR: "#9A9",
EVENT_LINK_COLOR: "#A86",
CONNECTING_LINK_COLOR: "#AFA",
BADGE_FG_COLOR: "#FFF",
BADGE_BG_COLOR: "#0F1F0F"
},
comfy_base: {
"fg-color": "#fff",
"bg-color": "#202020",
"comfy-menu-bg": "#353535",
"comfy-input-bg": "#222",
"input-text": "#ddd",
"descrip-text": "#999",
"drag-text": "#ccc",
"error-text": "#ff4444",
"border-color": "#4e4e4e",
"tr-even-bg-color": "#222",
"tr-odd-bg-color": "#353535",
"content-bg": "#4e4e4e",
"content-fg": "#fff",
"content-hover-bg": "#222",
"content-hover-fg": "#fff"
}
}
},
light: {
id: "light",
name: "Light",
colors: {
node_slot: {
CLIP: "#FFA726",
// orange
CLIP_VISION: "#5C6BC0",
// indigo
CLIP_VISION_OUTPUT: "#8D6E63",
// brown
CONDITIONING: "#EF5350",
// red
CONTROL_NET: "#66BB6A",
// green
IMAGE: "#42A5F5",
// blue
LATENT: "#AB47BC",
// purple
MASK: "#9CCC65",
// light green
MODEL: "#7E57C2",
// deep purple
STYLE_MODEL: "#D4E157",
// lime
VAE: "#FF7043"
// deep orange
},
litegraph_base: {
BACKGROUND_IMAGE: "",
CLEAR_BACKGROUND_COLOR: "lightgray",
NODE_TITLE_COLOR: "#222",
NODE_SELECTED_TITLE_COLOR: "#000",
NODE_TEXT_SIZE: 14,
NODE_TEXT_COLOR: "#444",
NODE_SUBTEXT_SIZE: 12,
NODE_DEFAULT_COLOR: "#F7F7F7",
NODE_DEFAULT_BGCOLOR: "#F5F5F5",
NODE_DEFAULT_BOXCOLOR: "#CCC",
NODE_DEFAULT_SHAPE: "box",
NODE_BOX_OUTLINE_COLOR: "#000",
NODE_BYPASS_BGCOLOR: "#FF00FF",
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.1)",
DEFAULT_GROUP_FONT: 24,
WIDGET_BGCOLOR: "#D4D4D4",
WIDGET_OUTLINE_COLOR: "#999",
WIDGET_TEXT_COLOR: "#222",
WIDGET_SECONDARY_TEXT_COLOR: "#555",
LINK_COLOR: "#4CAF50",
EVENT_LINK_COLOR: "#FF9800",
CONNECTING_LINK_COLOR: "#2196F3",
BADGE_FG_COLOR: "#000",
BADGE_BG_COLOR: "#FFF"
},
comfy_base: {
"fg-color": "#222",
"bg-color": "#DDD",
"comfy-menu-bg": "#F5F5F5",
"comfy-input-bg": "#C9C9C9",
"input-text": "#222",
"descrip-text": "#444",
"drag-text": "#555",
"error-text": "#F44336",
"border-color": "#888",
"tr-even-bg-color": "#f9f9f9",
"tr-odd-bg-color": "#fff",
"content-bg": "#e0e0e0",
"content-fg": "#222",
"content-hover-bg": "#adadad",
"content-hover-fg": "#222"
}
}
},
solarized: {
id: "solarized",
name: "Solarized",
colors: {
node_slot: {
CLIP: "#2AB7CA",
// light blue
CLIP_VISION: "#6c71c4",
// blue violet
CLIP_VISION_OUTPUT: "#859900",
// olive green
CONDITIONING: "#d33682",
// magenta
CONTROL_NET: "#d1ffd7",
// light mint green
IMAGE: "#5940bb",
// deep blue violet
LATENT: "#268bd2",
// blue
MASK: "#CCC9E7",
// light purple-gray
MODEL: "#dc322f",
// red
STYLE_MODEL: "#1a998a",
// teal
UPSCALE_MODEL: "#054A29",
// dark green
VAE: "#facfad"
// light pink-orange
},
litegraph_base: {
NODE_TITLE_COLOR: "#fdf6e3",
// Base3
NODE_SELECTED_TITLE_COLOR: "#A9D400",
NODE_TEXT_SIZE: 14,
NODE_TEXT_COLOR: "#657b83",
// Base00
NODE_SUBTEXT_SIZE: 12,
NODE_DEFAULT_COLOR: "#094656",
NODE_DEFAULT_BGCOLOR: "#073642",
// Base02
NODE_DEFAULT_BOXCOLOR: "#839496",
// Base0
NODE_DEFAULT_SHAPE: "box",
NODE_BOX_OUTLINE_COLOR: "#fdf6e3",
// Base3
NODE_BYPASS_BGCOLOR: "#FF00FF",
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)",
DEFAULT_GROUP_FONT: 24,
WIDGET_BGCOLOR: "#002b36",
// Base03
WIDGET_OUTLINE_COLOR: "#839496",
// Base0
WIDGET_TEXT_COLOR: "#fdf6e3",
// Base3
WIDGET_SECONDARY_TEXT_COLOR: "#93a1a1",
// Base1
LINK_COLOR: "#2aa198",
// Solarized Cyan
EVENT_LINK_COLOR: "#268bd2",
// Solarized Blue
CONNECTING_LINK_COLOR: "#859900"
// Solarized Green
},
comfy_base: {
"fg-color": "#fdf6e3",
// Base3
"bg-color": "#002b36",
// Base03
"comfy-menu-bg": "#073642",
// Base02
"comfy-input-bg": "#002b36",
// Base03
"input-text": "#93a1a1",
// Base1
"descrip-text": "#586e75",
// Base01
"drag-text": "#839496",
// Base0
"error-text": "#dc322f",
// Solarized Red
"border-color": "#657b83",
// Base00
"tr-even-bg-color": "#002b36",
"tr-odd-bg-color": "#073642",
"content-bg": "#657b83",
"content-fg": "#fdf6e3",
"content-hover-bg": "#002b36",
"content-hover-fg": "#fdf6e3"
}
}
},
arc: {
id: "arc",
name: "Arc",
colors: {
node_slot: {
BOOLEAN: "",
CLIP: "#eacb8b",
CLIP_VISION: "#A8DADC",
CLIP_VISION_OUTPUT: "#ad7452",
CONDITIONING: "#cf876f",
CONTROL_NET: "#00d78d",
CONTROL_NET_WEIGHTS: "",
FLOAT: "",
GLIGEN: "",
IMAGE: "#80a1c0",
IMAGEUPLOAD: "",
INT: "",
LATENT: "#b38ead",
LATENT_KEYFRAME: "",
MASK: "#a3bd8d",
MODEL: "#8978a7",
SAMPLER: "",
SIGMAS: "",
STRING: "",
STYLE_MODEL: "#C2FFAE",
T2I_ADAPTER_WEIGHTS: "",
TAESD: "#DCC274",
TIMESTEP_KEYFRAME: "",
UPSCALE_MODEL: "",
VAE: "#be616b"
},
litegraph_base: {
BACKGROUND_IMAGE: "",
CLEAR_BACKGROUND_COLOR: "#2b2f38",
NODE_TITLE_COLOR: "#b2b7bd",
NODE_SELECTED_TITLE_COLOR: "#FFF",
NODE_TEXT_SIZE: 14,
NODE_TEXT_COLOR: "#AAA",
NODE_SUBTEXT_SIZE: 12,
NODE_DEFAULT_COLOR: "#2b2f38",
NODE_DEFAULT_BGCOLOR: "#242730",
NODE_DEFAULT_BOXCOLOR: "#6e7581",
NODE_DEFAULT_SHAPE: "box",
NODE_BOX_OUTLINE_COLOR: "#FFF",
NODE_BYPASS_BGCOLOR: "#FF00FF",
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)",
DEFAULT_GROUP_FONT: 22,
WIDGET_BGCOLOR: "#2b2f38",
WIDGET_OUTLINE_COLOR: "#6e7581",
WIDGET_TEXT_COLOR: "#DDD",
WIDGET_SECONDARY_TEXT_COLOR: "#b2b7bd",
LINK_COLOR: "#9A9",
EVENT_LINK_COLOR: "#A86",
CONNECTING_LINK_COLOR: "#AFA"
},
comfy_base: {
"fg-color": "#fff",
"bg-color": "#2b2f38",
"comfy-menu-bg": "#242730",
"comfy-input-bg": "#2b2f38",
"input-text": "#ddd",
"descrip-text": "#b2b7bd",
"drag-text": "#ccc",
"error-text": "#ff4444",
"border-color": "#6e7581",
"tr-even-bg-color": "#2b2f38",
"tr-odd-bg-color": "#242730",
"content-bg": "#6e7581",
"content-fg": "#fff",
"content-hover-bg": "#2b2f38",
"content-hover-fg": "#fff"
}
}
},
nord: {
id: "nord",
name: "Nord",
colors: {
node_slot: {
BOOLEAN: "",
CLIP: "#eacb8b",
CLIP_VISION: "#A8DADC",
CLIP_VISION_OUTPUT: "#ad7452",
CONDITIONING: "#cf876f",
CONTROL_NET: "#00d78d",
CONTROL_NET_WEIGHTS: "",
FLOAT: "",
GLIGEN: "",
IMAGE: "#80a1c0",
IMAGEUPLOAD: "",
INT: "",
LATENT: "#b38ead",
LATENT_KEYFRAME: "",
MASK: "#a3bd8d",
MODEL: "#8978a7",
SAMPLER: "",
SIGMAS: "",
STRING: "",
STYLE_MODEL: "#C2FFAE",
T2I_ADAPTER_WEIGHTS: "",
TAESD: "#DCC274",
TIMESTEP_KEYFRAME: "",
UPSCALE_MODEL: "",
VAE: "#be616b"
},
litegraph_base: {
BACKGROUND_IMAGE: "",
CLEAR_BACKGROUND_COLOR: "#212732",
NODE_TITLE_COLOR: "#999",
NODE_SELECTED_TITLE_COLOR: "#e5eaf0",
NODE_TEXT_SIZE: 14,
NODE_TEXT_COLOR: "#bcc2c8",
NODE_SUBTEXT_SIZE: 12,
NODE_DEFAULT_COLOR: "#2e3440",
NODE_DEFAULT_BGCOLOR: "#161b22",
NODE_DEFAULT_BOXCOLOR: "#545d70",
NODE_DEFAULT_SHAPE: "box",
NODE_BOX_OUTLINE_COLOR: "#e5eaf0",
NODE_BYPASS_BGCOLOR: "#FF00FF",
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)",
DEFAULT_GROUP_FONT: 24,
WIDGET_BGCOLOR: "#2e3440",
WIDGET_OUTLINE_COLOR: "#545d70",
WIDGET_TEXT_COLOR: "#bcc2c8",
WIDGET_SECONDARY_TEXT_COLOR: "#999",
LINK_COLOR: "#9A9",
EVENT_LINK_COLOR: "#A86",
CONNECTING_LINK_COLOR: "#AFA"
},
comfy_base: {
"fg-color": "#e5eaf0",
"bg-color": "#2e3440",
"comfy-menu-bg": "#161b22",
"comfy-input-bg": "#2e3440",
"input-text": "#bcc2c8",
"descrip-text": "#999",
"drag-text": "#ccc",
"error-text": "#ff4444",
"border-color": "#545d70",
"tr-even-bg-color": "#2e3440",
"tr-odd-bg-color": "#161b22",
"content-bg": "#545d70",
"content-fg": "#e5eaf0",
"content-hover-bg": "#2e3440",
"content-hover-fg": "#e5eaf0"
}
}
},
github: {
id: "github",
name: "Github",
colors: {
node_slot: {
BOOLEAN: "",
CLIP: "#eacb8b",
CLIP_VISION: "#A8DADC",
CLIP_VISION_OUTPUT: "#ad7452",
CONDITIONING: "#cf876f",
CONTROL_NET: "#00d78d",
CONTROL_NET_WEIGHTS: "",
FLOAT: "",
GLIGEN: "",
IMAGE: "#80a1c0",
IMAGEUPLOAD: "",
INT: "",
LATENT: "#b38ead",
LATENT_KEYFRAME: "",
MASK: "#a3bd8d",
MODEL: "#8978a7",
SAMPLER: "",
SIGMAS: "",
STRING: "",
STYLE_MODEL: "#C2FFAE",
T2I_ADAPTER_WEIGHTS: "",
TAESD: "#DCC274",
TIMESTEP_KEYFRAME: "",
UPSCALE_MODEL: "",
VAE: "#be616b"
},
litegraph_base: {
BACKGROUND_IMAGE: "",
CLEAR_BACKGROUND_COLOR: "#040506",
NODE_TITLE_COLOR: "#999",
NODE_SELECTED_TITLE_COLOR: "#e5eaf0",
NODE_TEXT_SIZE: 14,
NODE_TEXT_COLOR: "#bcc2c8",
NODE_SUBTEXT_SIZE: 12,
NODE_DEFAULT_COLOR: "#161b22",
NODE_DEFAULT_BGCOLOR: "#13171d",
NODE_DEFAULT_BOXCOLOR: "#30363d",
NODE_DEFAULT_SHAPE: "box",
NODE_BOX_OUTLINE_COLOR: "#e5eaf0",
NODE_BYPASS_BGCOLOR: "#FF00FF",
DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)",
DEFAULT_GROUP_FONT: 24,
WIDGET_BGCOLOR: "#161b22",
WIDGET_OUTLINE_COLOR: "#30363d",
WIDGET_TEXT_COLOR: "#bcc2c8",
WIDGET_SECONDARY_TEXT_COLOR: "#999",
LINK_COLOR: "#9A9",
EVENT_LINK_COLOR: "#A86",
CONNECTING_LINK_COLOR: "#AFA"
},
comfy_base: {
"fg-color": "#e5eaf0",
"bg-color": "#161b22",
"comfy-menu-bg": "#13171d",
"comfy-input-bg": "#161b22",
"input-text": "#bcc2c8",
"descrip-text": "#999",
"drag-text": "#ccc",
"error-text": "#ff4444",
"border-color": "#30363d",
"tr-even-bg-color": "#161b22",
"tr-odd-bg-color": "#13171d",
"content-bg": "#30363d",
"content-fg": "#e5eaf0",
"content-hover-bg": "#161b22",
"content-hover-fg": "#e5eaf0"
}
}
}
};
const id = "Comfy.ColorPalette";
const idCustomColorPalettes = "Comfy.CustomColorPalettes";
const defaultColorPaletteId = "dark";
const els = {
select: null
};
const getCustomColorPalettes = /* @__PURE__ */ __name(() => {
return app.ui.settings.getSettingValue(idCustomColorPalettes, {});
}, "getCustomColorPalettes");
const setCustomColorPalettes = /* @__PURE__ */ __name((customColorPalettes) => {
return app.ui.settings.setSettingValue(
idCustomColorPalettes,
customColorPalettes
);
}, "setCustomColorPalettes");
const defaultColorPalette = colorPalettes[defaultColorPaletteId];
const getColorPalette = /* @__PURE__ */ __name((colorPaletteId) => {
if (!colorPaletteId) {
colorPaletteId = app.ui.settings.getSettingValue(id, defaultColorPaletteId);
}
if (colorPaletteId.startsWith("custom_")) {
colorPaletteId = colorPaletteId.substr(7);
let customColorPalettes = getCustomColorPalettes();
if (customColorPalettes[colorPaletteId]) {
return customColorPalettes[colorPaletteId];
}
}
return colorPalettes[colorPaletteId];
}, "getColorPalette");
const setColorPalette = /* @__PURE__ */ __name((colorPaletteId) => {
app.ui.settings.setSettingValue(id, colorPaletteId);
}, "setColorPalette");
app.registerExtension({
name: id,
init() {
LGraphCanvas.prototype.updateBackground = function(image, clearBackgroundColor) {
this._bg_img = new Image();
this._bg_img.name = image;
this._bg_img.src = image;
this._bg_img.onload = () => {
this.draw(true, true);
};
this.background_image = image;
this.clear_background = true;
this.clear_background_color = clearBackgroundColor;
this._pattern = null;
};
},
addCustomNodeDefs(node_defs) {
const sortObjectKeys = /* @__PURE__ */ __name((unordered) => {
return Object.keys(unordered).sort().reduce((obj, key) => {
obj[key] = unordered[key];
return obj;
}, {});
}, "sortObjectKeys");
function getSlotTypes() {
var types = [];
const defs = node_defs;
for (const nodeId in defs) {
const nodeData = defs[nodeId];
var inputs = nodeData["input"]["required"];
if (nodeData["input"]["optional"] !== void 0) {
inputs = Object.assign(
{},
nodeData["input"]["required"],
nodeData["input"]["optional"]
);
}
for (const inputName in inputs) {
const inputData = inputs[inputName];
const type = inputData[0];
if (!Array.isArray(type)) {
types.push(type);
}
}
for (const o in nodeData["output"]) {
const output = nodeData["output"][o];
types.push(output);
}
}
return types;
}
__name(getSlotTypes, "getSlotTypes");
function completeColorPalette(colorPalette) {
var types = getSlotTypes();
for (const type of types) {
if (!colorPalette.colors.node_slot[type]) {
colorPalette.colors.node_slot[type] = "";
}
}
colorPalette.colors.node_slot = sortObjectKeys(
colorPalette.colors.node_slot
);
return colorPalette;
}
__name(completeColorPalette, "completeColorPalette");
const getColorPaletteTemplate = /* @__PURE__ */ __name(async () => {
let colorPalette = {
id: "my_color_palette_unique_id",
name: "My Color Palette",
colors: {
node_slot: {},
litegraph_base: {},
comfy_base: {}
}
};
const defaultColorPalette2 = colorPalettes[defaultColorPaletteId];
for (const key in defaultColorPalette2.colors.litegraph_base) {
if (!colorPalette.colors.litegraph_base[key]) {
colorPalette.colors.litegraph_base[key] = "";
}
}
for (const key in defaultColorPalette2.colors.comfy_base) {
if (!colorPalette.colors.comfy_base[key]) {
colorPalette.colors.comfy_base[key] = "";
}
}
return completeColorPalette(colorPalette);
}, "getColorPaletteTemplate");
const addCustomColorPalette = /* @__PURE__ */ __name(async (colorPalette) => {
if (typeof colorPalette !== "object") {
useToastStore().addAlert("Invalid color palette.");
return;
}
if (!colorPalette.id) {
useToastStore().addAlert("Color palette missing id.");
return;
}
if (!colorPalette.name) {
useToastStore().addAlert("Color palette missing name.");
return;
}
if (!colorPalette.colors) {
useToastStore().addAlert("Color palette missing colors.");
return;
}
if (colorPalette.colors.node_slot && typeof colorPalette.colors.node_slot !== "object") {
useToastStore().addAlert("Invalid color palette colors.node_slot.");
return;
}
const customColorPalettes = getCustomColorPalettes();
customColorPalettes[colorPalette.id] = colorPalette;
setCustomColorPalettes(customColorPalettes);
for (const option of els.select.childNodes) {
if (option.value === "custom_" + colorPalette.id) {
els.select.removeChild(option);
}
}
els.select.append(
$el("option", {
textContent: colorPalette.name + " (custom)",
value: "custom_" + colorPalette.id,
selected: true
})
);
setColorPalette("custom_" + colorPalette.id);
await loadColorPalette(colorPalette);
}, "addCustomColorPalette");
const deleteCustomColorPalette = /* @__PURE__ */ __name(async (colorPaletteId) => {
const customColorPalettes = getCustomColorPalettes();
delete customColorPalettes[colorPaletteId];
setCustomColorPalettes(customColorPalettes);
for (const opt of els.select.childNodes) {
const option = opt;
if (option.value === defaultColorPaletteId) {
option.selected = true;
}
if (option.value === "custom_" + colorPaletteId) {
els.select.removeChild(option);
}
}
setColorPalette(defaultColorPaletteId);
await loadColorPalette(getColorPalette());
}, "deleteCustomColorPalette");
const loadColorPalette = /* @__PURE__ */ __name(async (colorPalette) => {
colorPalette = await completeColorPalette(colorPalette);
if (colorPalette.colors) {
if (colorPalette.colors.node_slot) {
Object.assign(
app.canvas.default_connection_color_byType,
colorPalette.colors.node_slot
);
Object.assign(
LGraphCanvas.link_type_colors,
colorPalette.colors.node_slot
);
}
if (colorPalette.colors.litegraph_base) {
app.canvas.node_title_color = colorPalette.colors.litegraph_base.NODE_TITLE_COLOR;
app.canvas.default_link_color = colorPalette.colors.litegraph_base.LINK_COLOR;
for (const key in colorPalette.colors.litegraph_base) {
if (colorPalette.colors.litegraph_base.hasOwnProperty(key) && LiteGraph.hasOwnProperty(key)) {
LiteGraph[key] = colorPalette.colors.litegraph_base[key];
}
}
}
if (colorPalette.colors.comfy_base) {
const rootStyle = document.documentElement.style;
for (const key in colorPalette.colors.comfy_base) {
rootStyle.setProperty(
"--" + key,
colorPalette.colors.comfy_base[key]
);
}
}
if (colorPalette.colors.litegraph_base.NODE_BYPASS_BGCOLOR) {
app.bypassBgColor = colorPalette.colors.litegraph_base.NODE_BYPASS_BGCOLOR;
}
app.canvas.draw(true, true);
}
}, "loadColorPalette");
const fileInput = $el("input", {
type: "file",
accept: ".json",
style: { display: "none" },
parent: document.body,
onchange: /* @__PURE__ */ __name(() => {
const file = fileInput.files[0];
if (file.type === "application/json" || file.name.endsWith(".json")) {
const reader = new FileReader();
reader.onload = async () => {
await addCustomColorPalette(JSON.parse(reader.result));
};
reader.readAsText(file);
}
}, "onchange")
});
app.ui.settings.addSetting({
id,
category: ["Comfy", "ColorPalette"],
name: "Color Palette",
type: /* @__PURE__ */ __name((name, setter, value) => {
const options = [
...Object.values(colorPalettes).map(
(c) => $el("option", {
textContent: c.name,
value: c.id,
selected: c.id === value
})
),
...Object.values(getCustomColorPalettes()).map(
(c) => $el("option", {
textContent: `${c.name} (custom)`,
value: `custom_${c.id}`,
selected: `custom_${c.id}` === value
})
)
];
els.select = $el(
"select",
{
style: {
marginBottom: "0.15rem",
width: "100%"
},
onchange: /* @__PURE__ */ __name((e) => {
setter(e.target.value);
}, "onchange")
},
options
);
return $el("tr", [
$el("td", [
els.select,
$el(
"div",
{
style: {
display: "grid",
gap: "4px",
gridAutoFlow: "column"
}
},
[
$el("input", {
type: "button",
value: "Export",
onclick: /* @__PURE__ */ __name(async () => {
const colorPaletteId = app.ui.settings.getSettingValue(
id,
defaultColorPaletteId
);
const colorPalette = await completeColorPalette(
getColorPalette(colorPaletteId)
);
const json = JSON.stringify(colorPalette, null, 2);
const blob = new Blob([json], { type: "application/json" });
const url = URL.createObjectURL(blob);
const a = $el("a", {
href: url,
download: colorPaletteId + ".json",
style: { display: "none" },
parent: document.body
});
a.click();
setTimeout(function() {
a.remove();
window.URL.revokeObjectURL(url);
}, 0);
}, "onclick")
}),
$el("input", {
type: "button",
value: "Import",
onclick: /* @__PURE__ */ __name(() => {
fileInput.click();
}, "onclick")
}),
$el("input", {
type: "button",
value: "Template",
onclick: /* @__PURE__ */ __name(async () => {
const colorPalette = await getColorPaletteTemplate();
const json = JSON.stringify(colorPalette, null, 2);
const blob = new Blob([json], { type: "application/json" });
const url = URL.createObjectURL(blob);
const a = $el("a", {
href: url,
download: "color_palette.json",
style: { display: "none" },
parent: document.body
});
a.click();
setTimeout(function() {
a.remove();
window.URL.revokeObjectURL(url);
}, 0);
}, "onclick")
}),
$el("input", {
type: "button",
value: "Delete",
onclick: /* @__PURE__ */ __name(async () => {
let colorPaletteId = app.ui.settings.getSettingValue(
id,
defaultColorPaletteId
);
if (colorPalettes[colorPaletteId]) {
useToastStore().addAlert(
"You cannot delete a built-in color palette."
);
return;
}
if (colorPaletteId.startsWith("custom_")) {
colorPaletteId = colorPaletteId.substr(7);
}
await deleteCustomColorPalette(colorPaletteId);
}, "onclick")
})
]
)
])
]);
}, "type"),
defaultValue: defaultColorPaletteId,
async onChange(value) {
if (!value) {
return;
}
let palette = colorPalettes[value];
if (palette) {
await loadColorPalette(palette);
} else if (value.startsWith("custom_")) {
value = value.substr(7);
let customColorPalettes = getCustomColorPalettes();
if (customColorPalettes[value]) {
palette = customColorPalettes[value];
await loadColorPalette(customColorPalettes[value]);
}
}
let { BACKGROUND_IMAGE, CLEAR_BACKGROUND_COLOR } = palette.colors.litegraph_base;
if (BACKGROUND_IMAGE === void 0 || CLEAR_BACKGROUND_COLOR === void 0) {
const base = colorPalettes["dark"].colors.litegraph_base;
BACKGROUND_IMAGE = base.BACKGROUND_IMAGE;
CLEAR_BACKGROUND_COLOR = base.CLEAR_BACKGROUND_COLOR;
}
app.canvas.updateBackground(BACKGROUND_IMAGE, CLEAR_BACKGROUND_COLOR);
}
});
}
});
window.comfyAPI = window.comfyAPI || {};
window.comfyAPI.colorPalette = window.comfyAPI.colorPalette || {};
window.comfyAPI.colorPalette.defaultColorPalette = defaultColorPalette;
window.comfyAPI.colorPalette.getColorPalette = getColorPalette;
export {
defaultColorPalette as d,
getColorPalette as g
};
//# sourceMappingURL=colorPalette-D5oi2-2V.js.map

File diff suppressed because one or more lines are too long

View File

@ -235,73 +235,33 @@
margin-bottom: 1rem;
}
[data-v-e5724e4d] .p-datatable-tbody > tr > td {
padding: 1px;
min-height: 2rem;
}
[data-v-e5724e4d] .p-datatable-row-selected .actions,[data-v-e5724e4d] .p-datatable-selectable-row:hover .actions {
visibility: visible;
}
.settings-tab-panels {
padding-top: 0px !important;
}
.settings-container[data-v-fc1edb48] {
.settings-container[data-v-63951e2f] {
display: flex;
height: 70vh;
width: 60vw;
max-width: 1000px;
max-width: 1024px;
overflow: hidden;
/* Prevents container from scrolling */
}
.settings-sidebar[data-v-fc1edb48] {
width: 250px;
flex-shrink: 0;
/* Prevents sidebar from shrinking */
overflow-y: auto;
padding: 10px;
}
.settings-search-box[data-v-fc1edb48] {
width: 100%;
margin-bottom: 10px;
}
.settings-content[data-v-fc1edb48] {
flex-grow: 1;
overflow-y: auto;
/* Allows vertical scrolling */
}
/* Ensure the Listbox takes full width of the sidebar */
.settings-sidebar[data-v-fc1edb48] .p-listbox {
width: 100%;
}
/* Optional: Style scrollbars for webkit browsers */
.settings-sidebar[data-v-fc1edb48]::-webkit-scrollbar,
.settings-content[data-v-fc1edb48]::-webkit-scrollbar {
width: 1px;
}
.settings-sidebar[data-v-fc1edb48]::-webkit-scrollbar-thumb,
.settings-content[data-v-fc1edb48]::-webkit-scrollbar-thumb {
background-color: transparent;
}
@media (max-width: 768px) {
.settings-container[data-v-fc1edb48] {
.settings-container[data-v-63951e2f] {
flex-direction: column;
height: auto;
}
.settings-sidebar[data-v-fc1edb48] {
.settings-sidebar[data-v-63951e2f] {
width: 100%;
}
}
/* Show a separator line above the Keybinding tab */
/* This indicates the start of custom setting panels */
.settings-sidebar[data-v-fc1edb48] .p-listbox-option[aria-label='Keybinding'] {
.settings-sidebar[data-v-63951e2f] .p-listbox-option[aria-label='Keybinding'] {
position: relative;
}
.settings-sidebar[data-v-fc1edb48] .p-listbox-option[aria-label='Keybinding']::before {
.settings-sidebar[data-v-63951e2f] .p-listbox-option[aria-label='Keybinding']::before {
position: absolute;
top: 0px;
left: 0px;
@ -640,6 +600,469 @@
bottom: 41px;
}
.editable-text[data-v-54da6fc9] {
display: inline;
}
.editable-text input[data-v-54da6fc9] {
width: 100%;
box-sizing: border-box;
}
.tree-node[data-v-fb2b90cf] {
width: 100%;
display: flex;
align-items: center;
justify-content: space-between;
}
.leaf-count-badge[data-v-fb2b90cf] {
margin-left: 0.5rem;
}
.node-content[data-v-fb2b90cf] {
display: flex;
align-items: center;
flex-grow: 1;
}
.leaf-label[data-v-fb2b90cf] {
margin-left: 0.5rem;
}
[data-v-fb2b90cf] .editable-text span {
word-break: break-all;
}
[data-v-bd7bae90] .tree-explorer-node-label {
width: 100%;
display: flex;
align-items: center;
margin-left: var(--p-tree-node-gap);
flex-grow: 1;
}
/*
* The following styles are necessary to avoid layout shift when dragging nodes over folders.
* By setting the position to relative on the parent and using an absolutely positioned pseudo-element,
* we can create a visual indicator for the drop target without affecting the layout of other elements.
*/
[data-v-bd7bae90] .p-tree-node-content:has(.tree-folder) {
position: relative;
}
[data-v-bd7bae90] .p-tree-node-content:has(.tree-folder.can-drop)::after {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
border: 1px solid var(--p-content-color);
pointer-events: none;
}
.model_preview[data-v-32e6c4d9] {
background-color: var(--comfy-menu-bg);
font-family: 'Open Sans', sans-serif;
color: var(--descrip-text);
border: 1px solid var(--descrip-text);
min-width: 300px;
max-width: 500px;
width: -moz-fit-content;
width: fit-content;
height: -moz-fit-content;
height: fit-content;
z-index: 9999;
border-radius: 12px;
overflow: hidden;
font-size: 12px;
padding: 10px;
}
.model_preview_image[data-v-32e6c4d9] {
margin: auto;
width: -moz-fit-content;
width: fit-content;
}
.model_preview_image img[data-v-32e6c4d9] {
max-width: 100%;
max-height: 150px;
-o-object-fit: contain;
object-fit: contain;
}
.model_preview_title[data-v-32e6c4d9] {
font-weight: bold;
text-align: center;
font-size: 14px;
}
.model_preview_top_container[data-v-32e6c4d9] {
text-align: center;
line-height: 0.5;
}
.model_preview_filename[data-v-32e6c4d9],
.model_preview_author[data-v-32e6c4d9],
.model_preview_architecture[data-v-32e6c4d9] {
display: inline-block;
text-align: center;
margin: 5px;
font-size: 10px;
}
.model_preview_prefix[data-v-32e6c4d9] {
font-weight: bold;
}
.model-lib-model-icon-container[data-v-70b69131] {
display: inline-block;
position: relative;
left: 0;
height: 1.5rem;
vertical-align: top;
width: 0px;
}
.model-lib-model-icon[data-v-70b69131] {
background-size: cover;
background-position: center;
display: inline-block;
position: relative;
left: -2.5rem;
height: 2rem;
width: 2rem;
vertical-align: top;
}
[data-v-32285943] .pi-fake-spacer {
height: 1px;
width: 16px;
}
.slot_row[data-v-ff07c900] {
padding: 2px;
}
/* Original N-Sidebar styles */
._sb_dot[data-v-ff07c900] {
width: 8px;
height: 8px;
border-radius: 50%;
background-color: grey;
}
.node_header[data-v-ff07c900] {
line-height: 1;
padding: 8px 13px 7px;
margin-bottom: 5px;
font-size: 15px;
text-wrap: nowrap;
overflow: hidden;
display: flex;
align-items: center;
}
.headdot[data-v-ff07c900] {
width: 10px;
height: 10px;
float: inline-start;
margin-right: 8px;
}
.IMAGE[data-v-ff07c900] {
background-color: #64b5f6;
}
.VAE[data-v-ff07c900] {
background-color: #ff6e6e;
}
.LATENT[data-v-ff07c900] {
background-color: #ff9cf9;
}
.MASK[data-v-ff07c900] {
background-color: #81c784;
}
.CONDITIONING[data-v-ff07c900] {
background-color: #ffa931;
}
.CLIP[data-v-ff07c900] {
background-color: #ffd500;
}
.MODEL[data-v-ff07c900] {
background-color: #b39ddb;
}
.CONTROL_NET[data-v-ff07c900] {
background-color: #a5d6a7;
}
._sb_node_preview[data-v-ff07c900] {
background-color: var(--comfy-menu-bg);
font-family: 'Open Sans', sans-serif;
font-size: small;
color: var(--descrip-text);
border: 1px solid var(--descrip-text);
min-width: 300px;
width: -moz-min-content;
width: min-content;
height: -moz-fit-content;
height: fit-content;
z-index: 9999;
border-radius: 12px;
overflow: hidden;
font-size: 12px;
padding-bottom: 10px;
}
._sb_node_preview ._sb_description[data-v-ff07c900] {
margin: 10px;
padding: 6px;
background: var(--border-color);
border-radius: 5px;
font-style: italic;
font-weight: 500;
font-size: 0.9rem;
word-break: break-word;
}
._sb_table[data-v-ff07c900] {
display: grid;
grid-column-gap: 10px;
/* Spazio tra le colonne */
width: 100%;
/* Imposta la larghezza della tabella al 100% del contenitore */
}
._sb_row[data-v-ff07c900] {
display: grid;
grid-template-columns: 10px 1fr 1fr 1fr 10px;
grid-column-gap: 10px;
align-items: center;
padding-left: 9px;
padding-right: 9px;
}
._sb_row_string[data-v-ff07c900] {
grid-template-columns: 10px 1fr 1fr 10fr 1fr;
}
._sb_col[data-v-ff07c900] {
border: 0px solid #000;
display: flex;
align-items: flex-end;
flex-direction: row-reverse;
flex-wrap: nowrap;
align-content: flex-start;
justify-content: flex-end;
}
._sb_inherit[data-v-ff07c900] {
display: inherit;
}
._long_field[data-v-ff07c900] {
background: var(--bg-color);
border: 2px solid var(--border-color);
margin: 5px 5px 0 5px;
border-radius: 10px;
line-height: 1.7;
text-wrap: nowrap;
}
._sb_arrow[data-v-ff07c900] {
color: var(--fg-color);
}
._sb_preview_badge[data-v-ff07c900] {
text-align: center;
background: var(--comfy-input-bg);
font-weight: bold;
color: var(--error-text);
}
.node-lib-node-container[data-v-90dfee08] {
height: 100%;
width: 100%
}
.p-selectbutton .p-button[data-v-91077f2a] {
padding: 0.5rem;
}
.p-selectbutton .p-button .pi[data-v-91077f2a] {
font-size: 1.5rem;
}
.field[data-v-91077f2a] {
display: flex;
flex-direction: column;
gap: 0.5rem;
}
.color-picker-container[data-v-91077f2a] {
display: flex;
align-items: center;
gap: 0.5rem;
}
._content[data-v-e7b35fd9] {
display: flex;
flex-direction: column
}
._content[data-v-e7b35fd9] > :not([hidden]) ~ :not([hidden]) {
--tw-space-y-reverse: 0;
margin-top: calc(0.5rem * calc(1 - var(--tw-space-y-reverse)));
margin-bottom: calc(0.5rem * var(--tw-space-y-reverse))
}
._footer[data-v-e7b35fd9] {
display: flex;
flex-direction: column;
align-items: flex-end;
padding-top: 1rem
}
.comfy-image-wrap[data-v-9bc23daf] {
display: contents;
}
.comfy-image-blur[data-v-9bc23daf] {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
-o-object-fit: cover;
object-fit: cover;
}
.comfy-image-main[data-v-9bc23daf] {
width: 100%;
height: 100%;
-o-object-fit: cover;
object-fit: cover;
-o-object-position: center;
object-position: center;
z-index: 1;
}
.contain .comfy-image-wrap[data-v-9bc23daf] {
position: relative;
width: 100%;
height: 100%;
}
.contain .comfy-image-main[data-v-9bc23daf] {
-o-object-fit: contain;
object-fit: contain;
-webkit-backdrop-filter: blur(10px);
backdrop-filter: blur(10px);
position: absolute;
}
.broken-image-placeholder[data-v-9bc23daf] {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
width: 100%;
height: 100%;
margin: 2rem;
}
.broken-image-placeholder i[data-v-9bc23daf] {
font-size: 3rem;
margin-bottom: 0.5rem;
}
.result-container[data-v-62b7731e] {
width: 100%;
height: 100%;
aspect-ratio: 1 / 1;
overflow: hidden;
position: relative;
display: flex;
justify-content: center;
align-items: center;
}
.preview-mask[data-v-62b7731e] {
position: absolute;
left: 50%;
top: 50%;
transform: translate(-50%, -50%);
display: flex;
align-items: center;
justify-content: center;
opacity: 0;
transition: opacity 0.3s ease;
z-index: 1;
}
.result-container:hover .preview-mask[data-v-62b7731e] {
opacity: 1;
}
.task-result-preview[data-v-28bce53e] {
aspect-ratio: 1 / 1;
overflow: hidden;
display: flex;
justify-content: center;
align-items: center;
width: 100%;
height: 100%;
}
.task-result-preview i[data-v-28bce53e],
.task-result-preview span[data-v-28bce53e] {
font-size: 2rem;
}
.task-item[data-v-28bce53e] {
display: flex;
flex-direction: column;
border-radius: 4px;
overflow: hidden;
position: relative;
}
.task-item-details[data-v-28bce53e] {
position: absolute;
bottom: 0;
padding: 0.6rem;
display: flex;
justify-content: space-between;
align-items: center;
width: 100%;
z-index: 1;
}
.task-node-link[data-v-28bce53e] {
padding: 2px;
}
/* In dark mode, transparent background color for tags is not ideal for tags that
are floating on top of images. */
.tag-wrapper[data-v-28bce53e] {
background-color: var(--p-primary-contrast-color);
border-radius: 6px;
display: inline-flex;
}
.node-name-tag[data-v-28bce53e] {
word-break: break-all;
}
.status-tag-group[data-v-28bce53e] {
display: flex;
flex-direction: column;
}
.progress-preview-img[data-v-28bce53e] {
width: 100%;
height: 100%;
-o-object-fit: cover;
object-fit: cover;
-o-object-position: center;
object-position: center;
}
/* PrimeVue's galleria teleports the fullscreen gallery out of subtree so we
cannot use scoped style here. */
img.galleria-image {
max-width: 100vw;
max-height: 100vh;
-o-object-fit: contain;
object-fit: contain;
}
.p-galleria-close-button {
/* Set z-index so the close button doesn't get hidden behind the image when image is large */
z-index: 1;
}
.scroll-container[data-v-0bfbd127] {
height: 100%;
overflow-y: auto;
}
.scroll-container[data-v-0bfbd127]::-webkit-scrollbar {
width: 1px;
}
.scroll-container[data-v-0bfbd127]::-webkit-scrollbar-thumb {
background-color: transparent;
}
.queue-grid[data-v-0bfbd127] {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
padding: 0.5rem;
gap: 0.5rem;
}
/* this CSS contains only the basic CSS needed to run the app and use it */
.lgraphcanvas {
@ -1439,6 +1862,9 @@ cursor: pointer;
.z-\[1000\]{
z-index: 1000;
}
.m-2{
margin: 0.5rem;
}
.mx-1{
margin-left: 0.25rem;
margin-right: 0.25rem;
@ -1447,14 +1873,6 @@ cursor: pointer;
margin-left: 0.5rem;
margin-right: 0.5rem;
}
.mx-4{
margin-left: 1rem;
margin-right: 1rem;
}
.my-4{
margin-top: 1rem;
margin-bottom: 1rem;
}
.mb-2{
margin-bottom: 0.5rem;
}
@ -1467,6 +1885,9 @@ cursor: pointer;
.ml-2{
margin-left: 0.5rem;
}
.ml-\[-13px\]{
margin-left: -13px;
}
.ml-auto{
margin-left: auto;
}
@ -1476,9 +1897,6 @@ cursor: pointer;
.mr-2{
margin-right: 0.5rem;
}
.mt-1{
margin-top: 0.25rem;
}
.mt-4{
margin-top: 1rem;
}
@ -1509,6 +1927,9 @@ cursor: pointer;
.hidden{
display: none;
}
.h-0{
height: 0px;
}
.h-64{
height: 16rem;
}
@ -1518,6 +1939,9 @@ cursor: pointer;
.h-screen{
height: 100vh;
}
.min-h-10{
min-height: 2.5rem;
}
.min-h-screen{
min-height: 100vh;
}
@ -1549,9 +1973,6 @@ cursor: pointer;
.max-w-\[150px\]{
max-width: 150px;
}
.flex-shrink{
flex-shrink: 1;
}
.flex-shrink-0{
flex-shrink: 0;
}
@ -1634,6 +2055,9 @@ cursor: pointer;
.overflow-y-auto{
overflow-y: auto;
}
.overflow-x-hidden{
overflow-x: hidden;
}
.truncate{
overflow: hidden;
text-overflow: ellipsis;
@ -1663,9 +2087,19 @@ cursor: pointer;
.border{
border-width: 1px;
}
.border-x-0{
border-left-width: 0px;
border-right-width: 0px;
}
.border-t-0{
border-top-width: 0px;
}
.border-none{
border-style: none;
}
.bg-\[var\(--p-tree-background\)\]{
background-color: var(--p-tree-background);
}
.bg-black{
--tw-bg-opacity: 1;
background-color: rgb(0 0 0 / var(--tw-bg-opacity));
@ -1698,6 +2132,12 @@ cursor: pointer;
.p-1{
padding: 0.25rem;
}
.p-2{
padding: 0.5rem;
}
.p-4{
padding: 1rem;
}
.px-0{
padding-left: 0px;
padding-right: 0px;
@ -1710,6 +2150,10 @@ cursor: pointer;
padding-top: 0px;
padding-bottom: 0px;
}
.py-1{
padding-top: 0.25rem;
padding-bottom: 0.25rem;
}
.pb-0{
padding-bottom: 0px;
}

1
web/assets/index-BMC1ey-i.js.map generated vendored

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

1
web/assets/index-CgU1oKZt.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

View File

@ -1,8 +1,7 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { c9 as ComfyDialog, ca as $el, cb as ComfyApp, k as app, z as LiteGraph, aP as LGraphCanvas, cc as DraggableList, bO as useToastStore, aq as useNodeDefStore, b4 as api, L as LGraphGroup, cd as KeyComboImpl, aT as useKeybindingStore, aL as useCommandStore, l as LGraphNode, ce as ComfyWidgets, cf as applyTextReplacements, aA as NodeSourceType, cg as NodeBadgeMode, h as useSettingStore, F as computed, w as watch, ch as BadgePosition, aR as LGraphBadge, au as _ } from "./index-DGAbdBYF.js";
import { g as getColorPalette, d as defaultColorPalette } from "./colorPalette-D5oi2-2V.js";
import { mergeIfValid, getWidgetConfig, setWidgetConfig } from "./widgetInputs-DdoWwzg5.js";
import { bu as ComfyDialog, bv as $el, bw as ComfyApp, c as app, k as LiteGraph, aP as LGraphCanvas, bx as DraggableList, a_ as useToastStore, ax as useNodeDefStore, bq as api, L as LGraphGroup, by as KeyComboImpl, K as useKeybindingStore, F as useCommandStore, e as LGraphNode, bz as ComfyWidgets, bA as applyTextReplacements, av as NodeSourceType, bB as NodeBadgeMode, u as useSettingStore, q as computed, bC as getColorPalette, w as watch, bD as BadgePosition, aR as LGraphBadge, bE as _, bF as defaultColorPalette } from "./index-CgU1oKZt.js";
import { mergeIfValid, getWidgetConfig, setWidgetConfig } from "./widgetInputs-DNVvusS1.js";
class ClipspaceDialog extends ComfyDialog {
static {
__name(this, "ClipspaceDialog");
@ -339,7 +338,7 @@ app.registerExtension({
if (text[start] === "(") openCount++;
if (text[start] === ")") closeCount++;
}
if (start < 0) return false;
if (start < 0) return null;
openCount = 0;
closeCount = 0;
while (end < text.length) {
@ -348,7 +347,7 @@ app.registerExtension({
if (text[end] === ")") closeCount++;
end++;
}
if (end === text.length) return false;
if (end === text.length) return null;
return { start: start + 1, end };
}
__name(findNearestEnclosure, "findNearestEnclosure");
@ -1637,9 +1636,7 @@ class GroupNodeHandler {
},
{
content: "Manage Group Node",
callback: /* @__PURE__ */ __name(() => {
new ManageGroupDialog(app).show(this.type);
}, "callback")
callback: manageGroupNodes
}
);
};
@ -1960,9 +1957,7 @@ function addConvertToGroupOptions() {
options.splice(index + 1, null, {
content: `Convert to Group Node`,
disabled,
callback: /* @__PURE__ */ __name(async () => {
return await GroupNodeHandler.fromNodes(selected);
}, "callback")
callback: convertSelectedNodesToGroupNode
});
}
__name(addConvertOption, "addConvertOption");
@ -1972,9 +1967,7 @@ function addConvertToGroupOptions() {
options.splice(index + 1, null, {
content: `Manage Group Nodes`,
disabled,
callback: /* @__PURE__ */ __name(() => {
new ManageGroupDialog(app).show();
}, "callback")
callback: manageGroupNodes
});
}
__name(addManageOption, "addManageOption");
@ -2004,10 +1997,77 @@ const replaceLegacySeparators = /* @__PURE__ */ __name((nodes) => {
}
}
}, "replaceLegacySeparators");
async function convertSelectedNodesToGroupNode() {
const nodes = Object.values(app.canvas.selected_nodes ?? {});
if (nodes.length === 0) {
throw new Error("No nodes selected");
}
if (nodes.length === 1) {
throw new Error("Please select multiple nodes to convert to group node");
}
if (nodes.some((n) => GroupNodeHandler.isGroupNode(n))) {
throw new Error("Selected nodes contain a group node");
}
return await GroupNodeHandler.fromNodes(nodes);
}
__name(convertSelectedNodesToGroupNode, "convertSelectedNodesToGroupNode");
function ungroupSelectedGroupNodes() {
const nodes = Object.values(app.canvas.selected_nodes ?? {});
for (const node of nodes) {
if (GroupNodeHandler.isGroupNode(node)) {
node["convertToNodes"]?.();
}
}
}
__name(ungroupSelectedGroupNodes, "ungroupSelectedGroupNodes");
function manageGroupNodes() {
new ManageGroupDialog(app).show();
}
__name(manageGroupNodes, "manageGroupNodes");
const id$3 = "Comfy.GroupNode";
let globalDefs;
const ext$1 = {
name: id$3,
commands: [
{
id: "Comfy.GroupNode.ConvertSelectedNodesToGroupNode",
label: "Convert selected nodes to group node",
icon: "pi pi-sitemap",
versionAdded: "1.3.17",
function: convertSelectedNodesToGroupNode
},
{
id: "Comfy.GroupNode.UngroupSelectedGroupNodes",
label: "Ungroup selected group nodes",
icon: "pi pi-sitemap",
versionAdded: "1.3.17",
function: ungroupSelectedGroupNodes
},
{
id: "Comfy.GroupNode.ManageGroupNodes",
label: "Manage group nodes",
icon: "pi pi-cog",
versionAdded: "1.3.17",
function: manageGroupNodes
}
],
keybindings: [
{
commandId: "Comfy.GroupNode.ConvertSelectedNodesToGroupNode",
combo: {
alt: true,
key: "g"
}
},
{
commandId: "Comfy.GroupNode.UngroupSelectedGroupNodes",
combo: {
alt: true,
shift: true,
key: "G"
}
}
],
setup() {
addConvertToGroupOptions();
},
@ -4172,10 +4232,19 @@ app.registerExtension({
LiteGraph.CANVAS_GRID_SIZE = +value || 10;
}
});
const alwaysSnapToGrid = app.ui.settings.addSetting({
id: "pysssss.SnapToGrid",
category: ["Comfy", "Graph", "AlwaysSnapToGrid"],
name: "Always snap to grid",
type: "boolean",
defaultValue: false,
versionAdded: "1.3.13"
});
const shouldSnapToGrid = /* @__PURE__ */ __name(() => app.shiftDown || alwaysSnapToGrid.value, "shouldSnapToGrid");
const onNodeMoved = app.canvas.onNodeMoved;
app.canvas.onNodeMoved = function(node) {
const r = onNodeMoved?.apply(this, arguments);
if (app.shiftDown) {
if (shouldSnapToGrid()) {
for (const id2 in this.selected_nodes) {
this.selected_nodes[id2].alignToGrid();
}
@ -4186,7 +4255,7 @@ app.registerExtension({
app.graph.onNodeAdded = function(node) {
const onResize = node.onResize;
node.onResize = function() {
if (app.shiftDown) {
if (shouldSnapToGrid()) {
roundVectorToGrid(node.size);
}
return onResize?.apply(this, arguments);
@ -4195,7 +4264,7 @@ app.registerExtension({
};
const origDrawNode = LGraphCanvas.prototype.drawNode;
LGraphCanvas.prototype.drawNode = function(node, ctx) {
if (app.shiftDown && this.node_dragged && node.id in this.selected_nodes) {
if (shouldSnapToGrid() && this.node_dragged && node.id in this.selected_nodes) {
const [x, y] = roundVectorToGrid([...node.pos]);
const shiftX = x - node.pos[0];
let shiftY = y - node.pos[1];
@ -4227,7 +4296,7 @@ app.registerExtension({
if (!selectedAndMovingGroup && app.canvas.selected_group === this && (deltax || deltay)) {
selectedAndMovingGroup = this;
}
if (app.canvas.last_mouse_dragging === false && app.shiftDown) {
if (app.canvas.last_mouse_dragging === false && shouldSnapToGrid()) {
this.recomputeInsideNodes();
for (const node of this.nodes) {
node.alignToGrid();
@ -4238,7 +4307,7 @@ app.registerExtension({
};
const drawGroups = LGraphCanvas.prototype.drawGroups;
LGraphCanvas.prototype.drawGroups = function(canvas, ctx) {
if (this.selected_group && app.shiftDown) {
if (this.selected_group && shouldSnapToGrid()) {
if (this.selected_group_resizing) {
roundVectorToGrid(this.selected_group.size);
} else if (selectedAndMovingGroup) {
@ -4261,7 +4330,7 @@ app.registerExtension({
const onGroupAdd = LGraphCanvas.onGroupAdd;
LGraphCanvas.onGroupAdd = function() {
const v = onGroupAdd.apply(app.canvas, arguments);
if (app.shiftDown) {
if (shouldSnapToGrid()) {
const lastGroup = app.graph.groups[app.graph.groups.length - 1];
if (lastGroup) {
roundVectorToGrid(lastGroup.pos);
@ -4274,7 +4343,7 @@ app.registerExtension({
});
app.registerExtension({
name: "Comfy.UploadImage",
async beforeRegisterNodeDef(nodeType, nodeData, app2) {
beforeRegisterNodeDef(nodeType, nodeData) {
if (nodeData?.input?.required?.image?.[1]?.image_upload === true) {
nodeData.input.required.upload = ["IMAGEUPLOAD"];
}
@ -4662,4 +4731,4 @@ class NodeBadgeExtension {
}
}
app.registerExtension(new NodeBadgeExtension());
//# sourceMappingURL=index-BMC1ey-i.js.map
//# sourceMappingURL=index-D36_Nnai.js.map

1
web/assets/index-D36_Nnai.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

8997
web/assets/index-DBWDcZsl.js generated vendored Normal file

File diff suppressed because one or more lines are too long

1
web/assets/index-DBWDcZsl.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

1
web/assets/index-DGAbdBYF.js.map generated vendored

File diff suppressed because one or more lines are too long

102
web/assets/index-DYEEBf64.js generated vendored Normal file
View File

@ -0,0 +1,102 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { bM as script$4, A as createBaseVNode, g as openBlock, h as createElementBlock, m as mergeProps } from "./index-CgU1oKZt.js";
var script$3 = {
name: "BarsIcon",
"extends": script$4
};
var _hoisted_1$3 = /* @__PURE__ */ createBaseVNode("path", {
"fill-rule": "evenodd",
"clip-rule": "evenodd",
d: "M13.3226 3.6129H0.677419C0.497757 3.6129 0.325452 3.54152 0.198411 3.41448C0.0713707 3.28744 0 3.11514 0 2.93548C0 2.75581 0.0713707 2.58351 0.198411 2.45647C0.325452 2.32943 0.497757 2.25806 0.677419 2.25806H13.3226C13.5022 2.25806 13.6745 2.32943 13.8016 2.45647C13.9286 2.58351 14 2.75581 14 2.93548C14 3.11514 13.9286 3.28744 13.8016 3.41448C13.6745 3.54152 13.5022 3.6129 13.3226 3.6129ZM13.3226 7.67741H0.677419C0.497757 7.67741 0.325452 7.60604 0.198411 7.479C0.0713707 7.35196 0 7.17965 0 6.99999C0 6.82033 0.0713707 6.64802 0.198411 6.52098C0.325452 6.39394 0.497757 6.32257 0.677419 6.32257H13.3226C13.5022 6.32257 13.6745 6.39394 13.8016 6.52098C13.9286 6.64802 14 6.82033 14 6.99999C14 7.17965 13.9286 7.35196 13.8016 7.479C13.6745 7.60604 13.5022 7.67741 13.3226 7.67741ZM0.677419 11.7419H13.3226C13.5022 11.7419 13.6745 11.6706 13.8016 11.5435C13.9286 11.4165 14 11.2442 14 11.0645C14 10.8848 13.9286 10.7125 13.8016 10.5855C13.6745 10.4585 13.5022 10.3871 13.3226 10.3871H0.677419C0.497757 10.3871 0.325452 10.4585 0.198411 10.5855C0.0713707 10.7125 0 10.8848 0 11.0645C0 11.2442 0.0713707 11.4165 0.198411 11.5435C0.325452 11.6706 0.497757 11.7419 0.677419 11.7419Z",
fill: "currentColor"
}, null, -1);
var _hoisted_2$3 = [_hoisted_1$3];
function render$3(_ctx, _cache, $props, $setup, $data, $options) {
return openBlock(), createElementBlock("svg", mergeProps({
width: "14",
height: "14",
viewBox: "0 0 14 14",
fill: "none",
xmlns: "http://www.w3.org/2000/svg"
}, _ctx.pti()), _hoisted_2$3, 16);
}
__name(render$3, "render$3");
script$3.render = render$3;
var script$2 = {
name: "PlusIcon",
"extends": script$4
};
var _hoisted_1$2 = /* @__PURE__ */ createBaseVNode("path", {
d: "M7.67742 6.32258V0.677419C7.67742 0.497757 7.60605 0.325452 7.47901 0.198411C7.35197 0.0713707 7.17966 0 7 0C6.82034 0 6.64803 0.0713707 6.52099 0.198411C6.39395 0.325452 6.32258 0.497757 6.32258 0.677419V6.32258H0.677419C0.497757 6.32258 0.325452 6.39395 0.198411 6.52099C0.0713707 6.64803 0 6.82034 0 7C0 7.17966 0.0713707 7.35197 0.198411 7.47901C0.325452 7.60605 0.497757 7.67742 0.677419 7.67742H6.32258V13.3226C6.32492 13.5015 6.39704 13.6725 6.52358 13.799C6.65012 13.9255 6.82106 13.9977 7 14C7.17966 14 7.35197 13.9286 7.47901 13.8016C7.60605 13.6745 7.67742 13.5022 7.67742 13.3226V7.67742H13.3226C13.5022 7.67742 13.6745 7.60605 13.8016 7.47901C13.9286 7.35197 14 7.17966 14 7C13.9977 6.82106 13.9255 6.65012 13.799 6.52358C13.6725 6.39704 13.5015 6.32492 13.3226 6.32258H7.67742Z",
fill: "currentColor"
}, null, -1);
var _hoisted_2$2 = [_hoisted_1$2];
function render$2(_ctx, _cache, $props, $setup, $data, $options) {
return openBlock(), createElementBlock("svg", mergeProps({
width: "14",
height: "14",
viewBox: "0 0 14 14",
fill: "none",
xmlns: "http://www.w3.org/2000/svg"
}, _ctx.pti()), _hoisted_2$2, 16);
}
__name(render$2, "render$2");
script$2.render = render$2;
var script$1 = {
name: "ExclamationTriangleIcon",
"extends": script$4
};
var _hoisted_1$1 = /* @__PURE__ */ createBaseVNode("path", {
d: "M13.4018 13.1893H0.598161C0.49329 13.189 0.390283 13.1615 0.299143 13.1097C0.208003 13.0578 0.131826 12.9832 0.0780112 12.8932C0.0268539 12.8015 0 12.6982 0 12.5931C0 12.4881 0.0268539 12.3848 0.0780112 12.293L6.47985 1.08982C6.53679 1.00399 6.61408 0.933574 6.70484 0.884867C6.7956 0.836159 6.897 0.810669 7 0.810669C7.103 0.810669 7.2044 0.836159 7.29516 0.884867C7.38592 0.933574 7.46321 1.00399 7.52015 1.08982L13.922 12.293C13.9731 12.3848 14 12.4881 14 12.5931C14 12.6982 13.9731 12.8015 13.922 12.8932C13.8682 12.9832 13.792 13.0578 13.7009 13.1097C13.6097 13.1615 13.5067 13.189 13.4018 13.1893ZM1.63046 11.989H12.3695L7 2.59425L1.63046 11.989Z",
fill: "currentColor"
}, null, -1);
var _hoisted_2$1 = /* @__PURE__ */ createBaseVNode("path", {
d: "M6.99996 8.78801C6.84143 8.78594 6.68997 8.72204 6.57787 8.60993C6.46576 8.49782 6.40186 8.34637 6.39979 8.18784V5.38703C6.39979 5.22786 6.46302 5.0752 6.57557 4.96265C6.68813 4.85009 6.84078 4.78686 6.99996 4.78686C7.15914 4.78686 7.31179 4.85009 7.42435 4.96265C7.5369 5.0752 7.60013 5.22786 7.60013 5.38703V8.18784C7.59806 8.34637 7.53416 8.49782 7.42205 8.60993C7.30995 8.72204 7.15849 8.78594 6.99996 8.78801Z",
fill: "currentColor"
}, null, -1);
var _hoisted_3 = /* @__PURE__ */ createBaseVNode("path", {
d: "M6.99996 11.1887C6.84143 11.1866 6.68997 11.1227 6.57787 11.0106C6.46576 10.8985 6.40186 10.7471 6.39979 10.5885V10.1884C6.39979 10.0292 6.46302 9.87658 6.57557 9.76403C6.68813 9.65147 6.84078 9.58824 6.99996 9.58824C7.15914 9.58824 7.31179 9.65147 7.42435 9.76403C7.5369 9.87658 7.60013 10.0292 7.60013 10.1884V10.5885C7.59806 10.7471 7.53416 10.8985 7.42205 11.0106C7.30995 11.1227 7.15849 11.1866 6.99996 11.1887Z",
fill: "currentColor"
}, null, -1);
var _hoisted_4 = [_hoisted_1$1, _hoisted_2$1, _hoisted_3];
function render$1(_ctx, _cache, $props, $setup, $data, $options) {
return openBlock(), createElementBlock("svg", mergeProps({
width: "14",
height: "14",
viewBox: "0 0 14 14",
fill: "none",
xmlns: "http://www.w3.org/2000/svg"
}, _ctx.pti()), _hoisted_4, 16);
}
__name(render$1, "render$1");
script$1.render = render$1;
var script = {
name: "InfoCircleIcon",
"extends": script$4
};
var _hoisted_1 = /* @__PURE__ */ createBaseVNode("path", {
"fill-rule": "evenodd",
"clip-rule": "evenodd",
d: "M3.11101 12.8203C4.26215 13.5895 5.61553 14 7 14C8.85652 14 10.637 13.2625 11.9497 11.9497C13.2625 10.637 14 8.85652 14 7C14 5.61553 13.5895 4.26215 12.8203 3.11101C12.0511 1.95987 10.9579 1.06266 9.67879 0.532846C8.3997 0.00303296 6.99224 -0.13559 5.63437 0.134506C4.2765 0.404603 3.02922 1.07129 2.05026 2.05026C1.07129 3.02922 0.404603 4.2765 0.134506 5.63437C-0.13559 6.99224 0.00303296 8.3997 0.532846 9.67879C1.06266 10.9579 1.95987 12.0511 3.11101 12.8203ZM3.75918 2.14976C4.71846 1.50879 5.84628 1.16667 7 1.16667C8.5471 1.16667 10.0308 1.78125 11.1248 2.87521C12.2188 3.96918 12.8333 5.45291 12.8333 7C12.8333 8.15373 12.4912 9.28154 11.8502 10.2408C11.2093 11.2001 10.2982 11.9478 9.23232 12.3893C8.16642 12.8308 6.99353 12.9463 5.86198 12.7212C4.73042 12.4962 3.69102 11.9406 2.87521 11.1248C2.05941 10.309 1.50384 9.26958 1.27876 8.13803C1.05367 7.00647 1.16919 5.83358 1.61071 4.76768C2.05222 3.70178 2.79989 2.79074 3.75918 2.14976ZM7.00002 4.8611C6.84594 4.85908 6.69873 4.79698 6.58977 4.68801C6.48081 4.57905 6.4187 4.43185 6.41669 4.27776V3.88888C6.41669 3.73417 6.47815 3.58579 6.58754 3.4764C6.69694 3.367 6.84531 3.30554 7.00002 3.30554C7.15473 3.30554 7.3031 3.367 7.4125 3.4764C7.52189 3.58579 7.58335 3.73417 7.58335 3.88888V4.27776C7.58134 4.43185 7.51923 4.57905 7.41027 4.68801C7.30131 4.79698 7.1541 4.85908 7.00002 4.8611ZM7.00002 10.6945C6.84594 10.6925 6.69873 10.6304 6.58977 10.5214C6.48081 10.4124 6.4187 10.2652 6.41669 10.1111V6.22225C6.41669 6.06754 6.47815 5.91917 6.58754 5.80977C6.69694 5.70037 6.84531 5.63892 7.00002 5.63892C7.15473 5.63892 7.3031 5.70037 7.4125 5.80977C7.52189 5.91917 7.58335 6.06754 7.58335 6.22225V10.1111C7.58134 10.2652 7.51923 10.4124 7.41027 10.5214C7.30131 10.6304 7.1541 10.6925 7.00002 10.6945Z",
fill: "currentColor"
}, null, -1);
var _hoisted_2 = [_hoisted_1];
function render(_ctx, _cache, $props, $setup, $data, $options) {
return openBlock(), createElementBlock("svg", mergeProps({
width: "14",
height: "14",
viewBox: "0 0 14 14",
fill: "none",
xmlns: "http://www.w3.org/2000/svg"
}, _ctx.pti()), _hoisted_2, 16);
}
__name(render, "render");
script.render = render;
export {
script$1 as a,
script$3 as b,
script$2 as c,
script as s
};
//# sourceMappingURL=index-DYEEBf64.js.map

1
web/assets/index-DYEEBf64.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

View File

@ -1,6 +1,6 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { b4 as api, ca as $el } from "./index-DGAbdBYF.js";
import { bq as api, bv as $el } from "./index-CgU1oKZt.js";
function createSpinner() {
const div = document.createElement("div");
div.innerHTML = `<div class="lds-ring"><div></div><div></div><div></div><div></div></div>`;
@ -126,4 +126,4 @@ window.comfyAPI.userSelection.UserSelectionScreen = UserSelectionScreen;
export {
UserSelectionScreen
};
//# sourceMappingURL=userSelection-Duxc-t_S.js.map
//# sourceMappingURL=userSelection-DVDwxLD5.js.map

1
web/assets/userSelection-DVDwxLD5.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,6 +1,6 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { l as LGraphNode, k as app, cf as applyTextReplacements, ce as ComfyWidgets, ci as addValueControlWidgets, z as LiteGraph } from "./index-DGAbdBYF.js";
import { e as LGraphNode, c as app, bA as applyTextReplacements, bz as ComfyWidgets, bG as addValueControlWidgets, k as LiteGraph } from "./index-CgU1oKZt.js";
const CONVERTED_TYPE = "converted-widget";
const VALID_TYPES = [
"STRING",
@ -753,4 +753,4 @@ export {
mergeIfValid,
setWidgetConfig
};
//# sourceMappingURL=widgetInputs-DdoWwzg5.js.map
//# sourceMappingURL=widgetInputs-DNVvusS1.js.map

1
web/assets/widgetInputs-DNVvusS1.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

4
web/index.html vendored
View File

@ -6,8 +6,8 @@
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no">
<link rel="stylesheet" type="text/css" href="user.css" />
<link rel="stylesheet" type="text/css" href="materialdesignicons.min.css" />
<script type="module" crossorigin src="./assets/index-DGAbdBYF.js"></script>
<link rel="stylesheet" crossorigin href="./assets/index-BHJGjcJh.css">
<script type="module" crossorigin src="./assets/index-CgU1oKZt.js"></script>
<link rel="stylesheet" crossorigin href="./assets/index-BDQCPKeJ.css">
</head>
<body class="litegraph grid">
<div id="vue-app"></div>