diff --git a/comfy/ldm/modules/attention.py b/comfy/ldm/modules/attention.py index 92b3eca7..c8338734 100644 --- a/comfy/ldm/modules/attention.py +++ b/comfy/ldm/modules/attention.py @@ -9,7 +9,7 @@ from typing import Optional, Any from ldm.modules.diffusionmodules.util import checkpoint from .sub_quadratic_attention import efficient_dot_product_attention -import model_management +from comfy import model_management from . import tomesd diff --git a/comfy/ldm/modules/diffusionmodules/model.py b/comfy/ldm/modules/diffusionmodules/model.py index 788a6fc4..1599d386 100644 --- a/comfy/ldm/modules/diffusionmodules/model.py +++ b/comfy/ldm/modules/diffusionmodules/model.py @@ -7,7 +7,7 @@ from einops import rearrange from typing import Optional, Any from ldm.modules.attention import MemoryEfficientCrossAttention -import model_management +from comfy import model_management if model_management.xformers_enabled_vae(): import xformers diff --git a/comfy/ldm/modules/sub_quadratic_attention.py b/comfy/ldm/modules/sub_quadratic_attention.py index f3c83f38..573cce74 100644 --- a/comfy/ldm/modules/sub_quadratic_attention.py +++ b/comfy/ldm/modules/sub_quadratic_attention.py @@ -24,7 +24,7 @@ except ImportError: from torch import Tensor from typing import List -import model_management +from comfy import model_management def dynamic_slice( x: Tensor, diff --git a/comfy/samplers.py b/comfy/samplers.py index 93f5d361..ed36442a 100644 --- a/comfy/samplers.py +++ b/comfy/samplers.py @@ -3,7 +3,7 @@ from .k_diffusion import external as k_diffusion_external from .extra_samplers import uni_pc import torch import contextlib -import model_management +from comfy import model_management from .ldm.models.diffusion.ddim import DDIMSampler from .ldm.modules.diffusionmodules.util import make_ddim_timesteps diff --git a/comfy/sd.py b/comfy/sd.py index d6d45fef..9c632e24 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -4,7 +4,7 @@ import copy import sd1_clip import sd2_clip -import model_management +from comfy import model_management from .ldm.util import instantiate_from_config from .ldm.models.autoencoder import AutoencoderKL import yaml @@ -388,7 +388,7 @@ class CLIP: return cond def encode(self, text): - tokens = self.tokenizer.tokenize_with_weights(text) + tokens = self.tokenize(text) return self.encode_from_tokens(tokens) class VAE: diff --git a/comfy_extras/nodes_upscale_model.py b/comfy_extras/nodes_upscale_model.py index 6a7d0e51..d8754698 100644 --- a/comfy_extras/nodes_upscale_model.py +++ b/comfy_extras/nodes_upscale_model.py @@ -1,6 +1,6 @@ import os from comfy_extras.chainner_models import model_loading -import model_management +from comfy import model_management import torch import comfy.utils import folder_paths diff --git a/nodes.py b/nodes.py index 6468ac6b..e6ad9434 100644 --- a/nodes.py +++ b/nodes.py @@ -21,16 +21,16 @@ import comfy.utils import comfy.clip_vision -import model_management +import comfy.model_management import importlib import folder_paths def before_node_execution(): - model_management.throw_exception_if_processing_interrupted() + comfy.model_management.throw_exception_if_processing_interrupted() def interrupt_processing(value=True): - model_management.interrupt_current_processing(value) + comfy.model_management.interrupt_current_processing(value) MAX_RESOLUTION=8192 @@ -241,7 +241,7 @@ class DiffusersLoader: model_path = os.path.join(search_path, model_path) break - return comfy.diffusers_convert.load_diffusers(model_path, fp16=model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings")) + return comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings")) class unCLIPCheckpointLoader: @@ -680,7 +680,7 @@ class SetLatentNoiseMask: def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False): latent_image = latent["samples"] noise_mask = None - device = model_management.get_torch_device() + device = comfy.model_management.get_torch_device() if disable_noise: noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") @@ -696,7 +696,7 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, noise_mask = noise_mask.to(device) real_model = None - model_management.load_model_gpu(model) + comfy.model_management.load_model_gpu(model) real_model = model.model noise = noise.to(device) @@ -726,7 +726,7 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, control_net_models = [] for x in control_nets: control_net_models += x.get_control_models() - model_management.load_controlnet_gpu(control_net_models) + comfy.model_management.load_controlnet_gpu(control_net_models) if sampler_name in comfy.samplers.KSampler.SAMPLERS: sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)