diff --git a/comfy/ops.py b/comfy/ops.py index c07cd908..05f7d306 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -290,12 +290,21 @@ class fp8_ops(manual_cast): weight, bias = cast_bias_weight(self, input) return torch.nn.functional.linear(input, weight, bias) -def scaled_fp8_ops(fp8_matrix_mult=False): +def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None): class scaled_fp8_op(manual_cast): class Linear(manual_cast.Linear): + def __init__(self, *args, **kwargs): + if override_dtype is not None: + kwargs['dtype'] = override_dtype + super().__init__(*args, **kwargs) + def reset_parameters(self): if not hasattr(self, 'scale_weight'): self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False) + + if not scale_input: + self.scale_input = None + if not hasattr(self, 'scale_input'): self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False) return None @@ -328,7 +337,7 @@ def scaled_fp8_ops(fp8_matrix_mult=False): def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=False): fp8_compute = comfy.model_management.supports_fp8_compute(load_device) if scaled_fp8: - return scaled_fp8_ops(fp8_matrix_mult=fp8_compute) + return scaled_fp8_ops(fp8_matrix_mult=fp8_compute, scale_input=True) if fp8_compute and (fp8_optimizations or args.fast) and not disable_fast_fp8: return fp8_ops diff --git a/comfy/sd.py b/comfy/sd.py index 9f552f20..bcec48c0 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -432,16 +432,15 @@ def detect_te_model(sd): return None -def t5xxl_weight_dtype(clip_data): +def t5xxl_detect(clip_data): weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" dtype_t5 = None for sd in clip_data: - weight = sd.get(weight_name, None) - if weight is not None: - dtype_t5 = weight.dtype - break - return dtype_t5 + if weight_name in sd: + return comfy.text_encoders.sd3_clip.t5_xxl_detect(sd) + + return {} def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): @@ -475,7 +474,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip clip_target.clip = comfy.text_encoders.sd2_clip.SD2ClipModel clip_target.tokenizer = comfy.text_encoders.sd2_clip.SD2Tokenizer elif te_model == TEModel.T5_XXL: - clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, dtype_t5=t5xxl_weight_dtype(clip_data)) + clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, **t5xxl_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer elif te_model == TEModel.T5_XL: clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model @@ -493,19 +492,19 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip elif len(clip_data) == 2: if clip_type == CLIPType.SD3: te_models = [detect_te_model(clip_data[0]), detect_te_model(clip_data[1])] - clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models, dtype_t5=t5xxl_weight_dtype(clip_data)) + clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models, **t5xxl_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer elif clip_type == CLIPType.HUNYUAN_DIT: clip_target.clip = comfy.text_encoders.hydit.HyditModel clip_target.tokenizer = comfy.text_encoders.hydit.HyditTokenizer elif clip_type == CLIPType.FLUX: - clip_target.clip = comfy.text_encoders.flux.flux_clip(dtype_t5=t5xxl_weight_dtype(clip_data)) + clip_target.clip = comfy.text_encoders.flux.flux_clip(**t5xxl_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.flux.FluxTokenizer else: clip_target.clip = sdxl_clip.SDXLClipModel clip_target.tokenizer = sdxl_clip.SDXLTokenizer elif len(clip_data) == 3: - clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(dtype_t5=t5xxl_weight_dtype(clip_data)) + clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(**t5xxl_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer parameters = 0 diff --git a/comfy/sd1_clip.py b/comfy/sd1_clip.py index bb240526..a454f3bb 100644 --- a/comfy/sd1_clip.py +++ b/comfy/sd1_clip.py @@ -94,11 +94,20 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): config = json.load(f) operations = model_options.get("custom_operations", None) + scaled_fp8 = None + if operations is None: - operations = comfy.ops.manual_cast + scaled_fp8 = model_options.get("scaled_fp8", None) + if scaled_fp8 is not None: + operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8) + else: + operations = comfy.ops.manual_cast self.operations = operations self.transformer = model_class(config, dtype, device, self.operations) + if scaled_fp8 is not None: + self.transformer.scaled_fp8 = torch.nn.Parameter(torch.tensor([], dtype=scaled_fp8)) + self.num_layers = self.transformer.num_layers self.max_length = max_length diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 3603313f..da39ccf4 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -529,12 +529,11 @@ class SD3(supported_models_base.BASE): clip_l = True if "{}clip_g.transformer.text_model.final_layer_norm.weight".format(pref) in state_dict: clip_g = True - t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref) - if t5_key in state_dict: + t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref)) + if "dtype_t5" in t5_detect: t5 = True - dtype_t5 = state_dict[t5_key].dtype - return supported_models_base.ClipTarget(comfy.text_encoders.sd3_clip.SD3Tokenizer, comfy.text_encoders.sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5)) + return supported_models_base.ClipTarget(comfy.text_encoders.sd3_clip.SD3Tokenizer, comfy.text_encoders.sd3_clip.sd3_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, **t5_detect)) class StableAudio(supported_models_base.BASE): unet_config = { @@ -653,11 +652,8 @@ class Flux(supported_models_base.BASE): def clip_target(self, state_dict={}): pref = self.text_encoder_key_prefix[0] - t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref) - dtype_t5 = None - if t5_key in state_dict: - dtype_t5 = state_dict[t5_key].dtype - return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(dtype_t5=dtype_t5)) + t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref)) + return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(**t5_detect)) class FluxSchnell(Flux): unet_config = { diff --git a/comfy/text_encoders/flux.py b/comfy/text_encoders/flux.py index b13fa5b4..b945b1aa 100644 --- a/comfy/text_encoders/flux.py +++ b/comfy/text_encoders/flux.py @@ -1,15 +1,11 @@ from comfy import sd1_clip import comfy.text_encoders.t5 +import comfy.text_encoders.sd3_clip import comfy.model_management from transformers import T5TokenizerFast import torch import os -class T5XXLModel(sd1_clip.SDClipModel): - def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}): - textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json") - super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, model_options=model_options) - class T5XXLTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") @@ -41,7 +37,7 @@ class FluxClipModel(torch.nn.Module): dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device) clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel) self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options) - self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options) + self.t5xxl = comfy.text_encoders.sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options) self.dtypes = set([dtype, dtype_t5]) def set_clip_options(self, options): @@ -66,8 +62,11 @@ class FluxClipModel(torch.nn.Module): else: return self.t5xxl.load_sd(sd) -def flux_clip(dtype_t5=None): +def flux_clip(dtype_t5=None, t5xxl_scaled_fp8=None): class FluxClipModel_(FluxClipModel): def __init__(self, device="cpu", dtype=None, model_options={}): + if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + model_options = model_options.copy() + model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options) return FluxClipModel_ diff --git a/comfy/text_encoders/sd3_clip.py b/comfy/text_encoders/sd3_clip.py index 0340e65b..00d7e31a 100644 --- a/comfy/text_encoders/sd3_clip.py +++ b/comfy/text_encoders/sd3_clip.py @@ -10,8 +10,26 @@ import logging class T5XXLModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=False, model_options={}): textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json") + t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None) + if t5xxl_scaled_fp8 is not None: + model_options = model_options.copy() + model_options["scaled_fp8"] = t5xxl_scaled_fp8 + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) + +def t5_xxl_detect(state_dict, prefix=""): + out = {} + t5_key = "{}encoder.final_layer_norm.weight".format(prefix) + if t5_key in state_dict: + out["dtype_t5"] = state_dict[t5_key].dtype + + scaled_fp8_key = "{}scaled_fp8".format(prefix) + if scaled_fp8_key in state_dict: + out["t5xxl_scaled_fp8"] = state_dict[scaled_fp8_key].dtype + + return out + class T5XXLTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") @@ -139,8 +157,11 @@ class SD3ClipModel(torch.nn.Module): else: return self.t5xxl.load_sd(sd) -def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_attention_mask=False): +def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5xxl_scaled_fp8=None, t5_attention_mask=False): class SD3ClipModel_(SD3ClipModel): def __init__(self, device="cpu", dtype=None, model_options={}): + if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + model_options = model_options.copy() + model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, t5_attention_mask=t5_attention_mask, device=device, dtype=dtype, model_options=model_options) return SD3ClipModel_