mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 02:15:17 +00:00
Merge branch 'condition_by_mask_node' of https://github.com/guill/ComfyUI
This commit is contained in:
commit
870fae62e7
@ -23,21 +23,33 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
adm_cond = cond[1]['adm_encoded']
|
||||
|
||||
input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
|
||||
mult = torch.ones_like(input_x) * strength
|
||||
if 'mask' in cond[1]:
|
||||
# Scale the mask to the size of the input
|
||||
# The mask should have been resized as we began the sampling process
|
||||
mask = cond[1]['mask']
|
||||
assert(mask.shape[1] == x_in.shape[2])
|
||||
assert(mask.shape[2] == x_in.shape[3])
|
||||
mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
|
||||
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
|
||||
else:
|
||||
mask = torch.ones_like(input_x)
|
||||
mult = mask * strength
|
||||
|
||||
if 'mask' not in cond[1]:
|
||||
rr = 8
|
||||
if area[2] != 0:
|
||||
for t in range(rr):
|
||||
mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
|
||||
if (area[0] + area[2]) < x_in.shape[2]:
|
||||
for t in range(rr):
|
||||
mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
|
||||
if area[3] != 0:
|
||||
for t in range(rr):
|
||||
mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
|
||||
if (area[1] + area[3]) < x_in.shape[3]:
|
||||
for t in range(rr):
|
||||
mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))
|
||||
|
||||
rr = 8
|
||||
if area[2] != 0:
|
||||
for t in range(rr):
|
||||
mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
|
||||
if (area[0] + area[2]) < x_in.shape[2]:
|
||||
for t in range(rr):
|
||||
mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
|
||||
if area[3] != 0:
|
||||
for t in range(rr):
|
||||
mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
|
||||
if (area[1] + area[3]) < x_in.shape[3]:
|
||||
for t in range(rr):
|
||||
mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))
|
||||
conditionning = {}
|
||||
conditionning['c_crossattn'] = cond[0]
|
||||
if cond_concat_in is not None and len(cond_concat_in) > 0:
|
||||
@ -301,6 +313,71 @@ def blank_inpaint_image_like(latent_image):
|
||||
blank_image[:,3] *= 0.1380
|
||||
return blank_image
|
||||
|
||||
def get_mask_aabb(masks):
|
||||
if masks.numel() == 0:
|
||||
return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
|
||||
|
||||
b = masks.shape[0]
|
||||
|
||||
bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
|
||||
is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
|
||||
for i in range(b):
|
||||
mask = masks[i]
|
||||
if mask.numel() == 0:
|
||||
continue
|
||||
if torch.max(mask != 0) == False:
|
||||
is_empty[i] = True
|
||||
continue
|
||||
y, x = torch.where(mask)
|
||||
bounding_boxes[i, 0] = torch.min(x)
|
||||
bounding_boxes[i, 1] = torch.min(y)
|
||||
bounding_boxes[i, 2] = torch.max(x)
|
||||
bounding_boxes[i, 3] = torch.max(y)
|
||||
|
||||
return bounding_boxes, is_empty
|
||||
|
||||
def resolve_cond_masks(conditions, h, w, device):
|
||||
# We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
|
||||
# While we're doing this, we can also resolve the mask device and scaling for performance reasons
|
||||
for i in range(len(conditions)):
|
||||
c = conditions[i]
|
||||
if 'mask' in c[1]:
|
||||
mask = c[1]['mask']
|
||||
mask = mask.to(device=device)
|
||||
modified = c[1].copy()
|
||||
if len(mask.shape) == 2:
|
||||
mask = mask.unsqueeze(0)
|
||||
if mask.shape[2] != h or mask.shape[3] != w:
|
||||
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)
|
||||
|
||||
if modified.get("set_area_to_bounds", False):
|
||||
bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
|
||||
boxes, is_empty = get_mask_aabb(bounds)
|
||||
if is_empty[0]:
|
||||
# Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
|
||||
modified['area'] = (8, 8, 0, 0)
|
||||
else:
|
||||
box = boxes[0]
|
||||
H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
|
||||
# Make sure the height and width are divisible by 8
|
||||
if X % 8 != 0:
|
||||
newx = X // 8 * 8
|
||||
W = W + (X - newx)
|
||||
X = newx
|
||||
if Y % 8 != 0:
|
||||
newy = Y // 8 * 8
|
||||
H = H + (Y - newy)
|
||||
Y = newy
|
||||
if H % 8 != 0:
|
||||
H = H + (8 - (H % 8))
|
||||
if W % 8 != 0:
|
||||
W = W + (8 - (W % 8))
|
||||
area = (int(H), int(W), int(Y), int(X))
|
||||
modified['area'] = area
|
||||
|
||||
modified['mask'] = mask
|
||||
conditions[i] = [c[0], modified]
|
||||
|
||||
def create_cond_with_same_area_if_none(conds, c):
|
||||
if 'area' not in c[1]:
|
||||
return
|
||||
@ -461,7 +538,6 @@ class KSampler:
|
||||
sigmas = self.calculate_sigmas(new_steps).to(self.device)
|
||||
self.sigmas = sigmas[-(steps + 1):]
|
||||
|
||||
|
||||
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None):
|
||||
if sigmas is None:
|
||||
sigmas = self.sigmas
|
||||
@ -484,6 +560,10 @@ class KSampler:
|
||||
|
||||
positive = positive[:]
|
||||
negative = negative[:]
|
||||
|
||||
resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
|
||||
resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)
|
||||
|
||||
#make sure each cond area has an opposite one with the same area
|
||||
for c in positive:
|
||||
create_cond_with_same_area_if_none(negative, c)
|
||||
|
30
nodes.py
30
nodes.py
@ -85,6 +85,34 @@ class ConditioningSetArea:
|
||||
c.append(n)
|
||||
return (c, )
|
||||
|
||||
class ConditioningSetMask:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"conditioning": ("CONDITIONING", ),
|
||||
"mask": ("MASK", ),
|
||||
"set_area_to_bounds": ([False, True],),
|
||||
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
FUNCTION = "append"
|
||||
|
||||
CATEGORY = "conditioning"
|
||||
|
||||
def append(self, conditioning, mask, set_area_to_bounds, strength, min_sigma=0.0, max_sigma=99.0):
|
||||
c = []
|
||||
if len(mask.shape) < 3:
|
||||
mask = mask.unsqueeze(0)
|
||||
for t in conditioning:
|
||||
n = [t[0], t[1].copy()]
|
||||
_, h, w = mask.shape
|
||||
n[1]['mask'] = mask
|
||||
n[1]['set_area_to_bounds'] = set_area_to_bounds
|
||||
n[1]['strength'] = strength
|
||||
n[1]['min_sigma'] = min_sigma
|
||||
n[1]['max_sigma'] = max_sigma
|
||||
c.append(n)
|
||||
return (c, )
|
||||
|
||||
class VAEDecode:
|
||||
def __init__(self, device="cpu"):
|
||||
self.device = device
|
||||
@ -1115,6 +1143,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"ImagePadForOutpaint": ImagePadForOutpaint,
|
||||
"ConditioningCombine": ConditioningCombine,
|
||||
"ConditioningSetArea": ConditioningSetArea,
|
||||
"ConditioningSetMask": ConditioningSetMask,
|
||||
"KSamplerAdvanced": KSamplerAdvanced,
|
||||
"SetLatentNoiseMask": SetLatentNoiseMask,
|
||||
"LatentComposite": LatentComposite,
|
||||
@ -1164,6 +1193,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"CLIPSetLastLayer": "CLIP Set Last Layer",
|
||||
"ConditioningCombine": "Conditioning (Combine)",
|
||||
"ConditioningSetArea": "Conditioning (Set Area)",
|
||||
"ConditioningSetMask": "Conditioning (Set Mask)",
|
||||
"ControlNetApply": "Apply ControlNet",
|
||||
# Latent
|
||||
"VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
|
||||
|
Loading…
Reference in New Issue
Block a user