mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-02-28 14:40:27 +00:00
Support Cambricon MLU (#6964)
Co-authored-by: huzhan <huzhan@cambricon.com>
This commit is contained in:
parent
3ea3bc8546
commit
89253e9fe5
@ -260,6 +260,13 @@ For models compatible with Ascend Extension for PyTorch (torch_npu). To get star
|
|||||||
3. Next, install the necessary packages for torch-npu by adhering to the platform-specific instructions on the [Installation](https://ascend.github.io/docs/sources/pytorch/install.html#pytorch) page.
|
3. Next, install the necessary packages for torch-npu by adhering to the platform-specific instructions on the [Installation](https://ascend.github.io/docs/sources/pytorch/install.html#pytorch) page.
|
||||||
4. Finally, adhere to the [ComfyUI manual installation](#manual-install-windows-linux) guide for Linux. Once all components are installed, you can run ComfyUI as described earlier.
|
4. Finally, adhere to the [ComfyUI manual installation](#manual-install-windows-linux) guide for Linux. Once all components are installed, you can run ComfyUI as described earlier.
|
||||||
|
|
||||||
|
#### Cambricon MLUs
|
||||||
|
|
||||||
|
For models compatible with Cambricon Extension for PyTorch (torch_mlu). Here's a step-by-step guide tailored to your platform and installation method:
|
||||||
|
|
||||||
|
1. Install the Cambricon CNToolkit by adhering to the platform-specific instructions on the [Installation](https://www.cambricon.com/docs/sdk_1.15.0/cntoolkit_3.7.2/cntoolkit_install_3.7.2/index.html)
|
||||||
|
2. Next, install the PyTorch(torch_mlu) following the instructions on the [Installation](https://www.cambricon.com/docs/sdk_1.15.0/cambricon_pytorch_1.17.0/user_guide_1.9/index.html)
|
||||||
|
3. Launch ComfyUI by running `python main.py --listen`
|
||||||
|
|
||||||
# Running
|
# Running
|
||||||
|
|
||||||
|
@ -95,6 +95,13 @@ try:
|
|||||||
except:
|
except:
|
||||||
npu_available = False
|
npu_available = False
|
||||||
|
|
||||||
|
try:
|
||||||
|
import torch_mlu # noqa: F401
|
||||||
|
_ = torch.mlu.device_count()
|
||||||
|
mlu_available = torch.mlu.is_available()
|
||||||
|
except:
|
||||||
|
mlu_available = False
|
||||||
|
|
||||||
if args.cpu:
|
if args.cpu:
|
||||||
cpu_state = CPUState.CPU
|
cpu_state = CPUState.CPU
|
||||||
|
|
||||||
@ -112,6 +119,12 @@ def is_ascend_npu():
|
|||||||
return True
|
return True
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
def is_mlu():
|
||||||
|
global mlu_available
|
||||||
|
if mlu_available:
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
def get_torch_device():
|
def get_torch_device():
|
||||||
global directml_enabled
|
global directml_enabled
|
||||||
global cpu_state
|
global cpu_state
|
||||||
@ -127,6 +140,8 @@ def get_torch_device():
|
|||||||
return torch.device("xpu", torch.xpu.current_device())
|
return torch.device("xpu", torch.xpu.current_device())
|
||||||
elif is_ascend_npu():
|
elif is_ascend_npu():
|
||||||
return torch.device("npu", torch.npu.current_device())
|
return torch.device("npu", torch.npu.current_device())
|
||||||
|
elif is_mlu():
|
||||||
|
return torch.device("mlu", torch.mlu.current_device())
|
||||||
else:
|
else:
|
||||||
return torch.device(torch.cuda.current_device())
|
return torch.device(torch.cuda.current_device())
|
||||||
|
|
||||||
@ -153,6 +168,12 @@ def get_total_memory(dev=None, torch_total_too=False):
|
|||||||
_, mem_total_npu = torch.npu.mem_get_info(dev)
|
_, mem_total_npu = torch.npu.mem_get_info(dev)
|
||||||
mem_total_torch = mem_reserved
|
mem_total_torch = mem_reserved
|
||||||
mem_total = mem_total_npu
|
mem_total = mem_total_npu
|
||||||
|
elif is_mlu():
|
||||||
|
stats = torch.mlu.memory_stats(dev)
|
||||||
|
mem_reserved = stats['reserved_bytes.all.current']
|
||||||
|
_, mem_total_mlu = torch.mlu.mem_get_info(dev)
|
||||||
|
mem_total_torch = mem_reserved
|
||||||
|
mem_total = mem_total_mlu
|
||||||
else:
|
else:
|
||||||
stats = torch.cuda.memory_stats(dev)
|
stats = torch.cuda.memory_stats(dev)
|
||||||
mem_reserved = stats['reserved_bytes.all.current']
|
mem_reserved = stats['reserved_bytes.all.current']
|
||||||
@ -232,7 +253,7 @@ try:
|
|||||||
if torch_version_numeric[0] >= 2:
|
if torch_version_numeric[0] >= 2:
|
||||||
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||||
ENABLE_PYTORCH_ATTENTION = True
|
ENABLE_PYTORCH_ATTENTION = True
|
||||||
if is_intel_xpu() or is_ascend_npu():
|
if is_intel_xpu() or is_ascend_npu() or is_mlu():
|
||||||
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||||
ENABLE_PYTORCH_ATTENTION = True
|
ENABLE_PYTORCH_ATTENTION = True
|
||||||
except:
|
except:
|
||||||
@ -316,6 +337,8 @@ def get_torch_device_name(device):
|
|||||||
return "{} {}".format(device, torch.xpu.get_device_name(device))
|
return "{} {}".format(device, torch.xpu.get_device_name(device))
|
||||||
elif is_ascend_npu():
|
elif is_ascend_npu():
|
||||||
return "{} {}".format(device, torch.npu.get_device_name(device))
|
return "{} {}".format(device, torch.npu.get_device_name(device))
|
||||||
|
elif is_mlu():
|
||||||
|
return "{} {}".format(device, torch.mlu.get_device_name(device))
|
||||||
else:
|
else:
|
||||||
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
|
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
|
||||||
|
|
||||||
@ -905,6 +928,8 @@ def xformers_enabled():
|
|||||||
return False
|
return False
|
||||||
if is_ascend_npu():
|
if is_ascend_npu():
|
||||||
return False
|
return False
|
||||||
|
if is_mlu():
|
||||||
|
return False
|
||||||
if directml_enabled:
|
if directml_enabled:
|
||||||
return False
|
return False
|
||||||
return XFORMERS_IS_AVAILABLE
|
return XFORMERS_IS_AVAILABLE
|
||||||
@ -936,6 +961,8 @@ def pytorch_attention_flash_attention():
|
|||||||
return True
|
return True
|
||||||
if is_ascend_npu():
|
if is_ascend_npu():
|
||||||
return True
|
return True
|
||||||
|
if is_mlu():
|
||||||
|
return True
|
||||||
if is_amd():
|
if is_amd():
|
||||||
return True #if you have pytorch attention enabled on AMD it probably supports at least mem efficient attention
|
return True #if you have pytorch attention enabled on AMD it probably supports at least mem efficient attention
|
||||||
return False
|
return False
|
||||||
@ -984,6 +1011,13 @@ def get_free_memory(dev=None, torch_free_too=False):
|
|||||||
mem_free_npu, _ = torch.npu.mem_get_info(dev)
|
mem_free_npu, _ = torch.npu.mem_get_info(dev)
|
||||||
mem_free_torch = mem_reserved - mem_active
|
mem_free_torch = mem_reserved - mem_active
|
||||||
mem_free_total = mem_free_npu + mem_free_torch
|
mem_free_total = mem_free_npu + mem_free_torch
|
||||||
|
elif is_mlu():
|
||||||
|
stats = torch.mlu.memory_stats(dev)
|
||||||
|
mem_active = stats['active_bytes.all.current']
|
||||||
|
mem_reserved = stats['reserved_bytes.all.current']
|
||||||
|
mem_free_mlu, _ = torch.mlu.mem_get_info(dev)
|
||||||
|
mem_free_torch = mem_reserved - mem_active
|
||||||
|
mem_free_total = mem_free_mlu + mem_free_torch
|
||||||
else:
|
else:
|
||||||
stats = torch.cuda.memory_stats(dev)
|
stats = torch.cuda.memory_stats(dev)
|
||||||
mem_active = stats['active_bytes.all.current']
|
mem_active = stats['active_bytes.all.current']
|
||||||
@ -1053,6 +1087,9 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True, ma
|
|||||||
if is_ascend_npu():
|
if is_ascend_npu():
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
if is_mlu():
|
||||||
|
return True
|
||||||
|
|
||||||
if torch.version.hip:
|
if torch.version.hip:
|
||||||
return True
|
return True
|
||||||
|
|
||||||
@ -1121,6 +1158,11 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
props = torch.cuda.get_device_properties(device)
|
props = torch.cuda.get_device_properties(device)
|
||||||
|
|
||||||
|
if is_mlu():
|
||||||
|
if props.major > 3:
|
||||||
|
return True
|
||||||
|
|
||||||
if props.major >= 8:
|
if props.major >= 8:
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user