From 8aabd7c8c053aa92aeca8661537175a4b6a6676d Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Sat, 7 Sep 2024 03:21:02 -0400 Subject: [PATCH] SaveLora node can now save "full diff" lora format. This isn't actually a lora format and is saving the full diff of the weights in a format that can be used in the lora loader nodes. --- comfy_extras/nodes_lora_extract.py | 39 +++++++++++++++++++++--------- 1 file changed, 27 insertions(+), 12 deletions(-) diff --git a/comfy_extras/nodes_lora_extract.py b/comfy_extras/nodes_lora_extract.py index 1523082b..3c2f179d 100644 --- a/comfy_extras/nodes_lora_extract.py +++ b/comfy_extras/nodes_lora_extract.py @@ -4,6 +4,7 @@ import comfy.utils import folder_paths import os import logging +from enum import Enum CLAMP_QUANTILE = 0.99 @@ -38,21 +39,34 @@ def extract_lora(diff, rank): Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1]) return (U, Vh) -def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, bias_diff=False): +class LORAType(Enum): + STANDARD = 0 + FULL_DIFF = 1 + +LORA_TYPES = {"standard": LORAType.STANDARD, + "full_diff": LORAType.FULL_DIFF} + +def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, bias_diff=False): comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True) sd = model_diff.model_state_dict(filter_prefix=prefix_model) for k in sd: if k.endswith(".weight"): weight_diff = sd[k] - if weight_diff.ndim < 2: - continue - try: - out = extract_lora(weight_diff, rank) - output_sd["{}{}.lora_up.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[0].contiguous().half().cpu() - output_sd["{}{}.lora_down.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[1].contiguous().half().cpu() - except: - logging.warning("Could not generate lora weights for key {}, is the weight difference a zero?".format(k)) + if lora_type == LORAType.STANDARD: + if weight_diff.ndim < 2: + if bias_diff: + output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu() + continue + try: + out = extract_lora(weight_diff, rank) + output_sd["{}{}.lora_up.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[0].contiguous().half().cpu() + output_sd["{}{}.lora_down.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[1].contiguous().half().cpu() + except: + logging.warning("Could not generate lora weights for key {}, is the weight difference a zero?".format(k)) + elif lora_type == LORAType.FULL_DIFF: + output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu() + elif bias_diff and k.endswith(".bias"): output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = sd[k].contiguous().half().cpu() return output_sd @@ -65,7 +79,7 @@ class LoraSave: def INPUT_TYPES(s): return {"required": {"filename_prefix": ("STRING", {"default": "loras/ComfyUI_extracted_lora"}), "rank": ("INT", {"default": 8, "min": 1, "max": 4096, "step": 1}), - "lora_type": (["standard"],), + "lora_type": (tuple(LORA_TYPES.keys()),), "bias_diff": ("BOOLEAN", {"default": True}), }, "optional": {"model_diff": ("MODEL",), @@ -81,13 +95,14 @@ class LoraSave: if model_diff is None and text_encoder_diff is None: return {} + lora_type = LORA_TYPES.get(lora_type) full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) output_sd = {} if model_diff is not None: - output_sd = calc_lora_model(model_diff, rank, "diffusion_model.", "diffusion_model.", output_sd, bias_diff=bias_diff) + output_sd = calc_lora_model(model_diff, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, bias_diff=bias_diff) if text_encoder_diff is not None: - output_sd = calc_lora_model(text_encoder_diff.patcher, rank, "", "text_encoders.", output_sd, bias_diff=bias_diff) + output_sd = calc_lora_model(text_encoder_diff.patcher, rank, "", "text_encoders.", output_sd, lora_type, bias_diff=bias_diff) output_checkpoint = f"{filename}_{counter:05}_.safetensors" output_checkpoint = os.path.join(full_output_folder, output_checkpoint)