Take some code from chainner to implement ESRGAN and other upscale models.

This commit is contained in:
comfyanonymous 2023-03-11 13:09:28 -05:00
parent 8c4ccb55d1
commit 905857edd8
45 changed files with 16654 additions and 0 deletions

View File

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2022 Xiangyu Chen
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,29 @@
BSD 3-Clause License
Copyright (c) 2021, Xintao Wang
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2018-2022 BasicSR Authors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,121 @@
Creative Commons Legal Code
CC0 1.0 Universal
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
HEREUNDER.
Statement of Purpose
The laws of most jurisdictions throughout the world automatically confer
exclusive Copyright and Related Rights (defined below) upon the creator
and subsequent owner(s) (each and all, an "owner") of an original work of
authorship and/or a database (each, a "Work").
Certain owners wish to permanently relinquish those rights to a Work for
the purpose of contributing to a commons of creative, cultural and
scientific works ("Commons") that the public can reliably and without fear
of later claims of infringement build upon, modify, incorporate in other
works, reuse and redistribute as freely as possible in any form whatsoever
and for any purposes, including without limitation commercial purposes.
These owners may contribute to the Commons to promote the ideal of a free
culture and the further production of creative, cultural and scientific
works, or to gain reputation or greater distribution for their Work in
part through the use and efforts of others.
For these and/or other purposes and motivations, and without any
expectation of additional consideration or compensation, the person
associating CC0 with a Work (the "Affirmer"), to the extent that he or she
is an owner of Copyright and Related Rights in the Work, voluntarily
elects to apply CC0 to the Work and publicly distribute the Work under its
terms, with knowledge of his or her Copyright and Related Rights in the
Work and the meaning and intended legal effect of CC0 on those rights.
1. Copyright and Related Rights. A Work made available under CC0 may be
protected by copyright and related or neighboring rights ("Copyright and
Related Rights"). Copyright and Related Rights include, but are not
limited to, the following:
i. the right to reproduce, adapt, distribute, perform, display,
communicate, and translate a Work;
ii. moral rights retained by the original author(s) and/or performer(s);
iii. publicity and privacy rights pertaining to a person's image or
likeness depicted in a Work;
iv. rights protecting against unfair competition in regards to a Work,
subject to the limitations in paragraph 4(a), below;
v. rights protecting the extraction, dissemination, use and reuse of data
in a Work;
vi. database rights (such as those arising under Directive 96/9/EC of the
European Parliament and of the Council of 11 March 1996 on the legal
protection of databases, and under any national implementation
thereof, including any amended or successor version of such
directive); and
vii. other similar, equivalent or corresponding rights throughout the
world based on applicable law or treaty, and any national
implementations thereof.
2. Waiver. To the greatest extent permitted by, but not in contravention
of, applicable law, Affirmer hereby overtly, fully, permanently,
irrevocably and unconditionally waives, abandons, and surrenders all of
Affirmer's Copyright and Related Rights and associated claims and causes
of action, whether now known or unknown (including existing as well as
future claims and causes of action), in the Work (i) in all territories
worldwide, (ii) for the maximum duration provided by applicable law or
treaty (including future time extensions), (iii) in any current or future
medium and for any number of copies, and (iv) for any purpose whatsoever,
including without limitation commercial, advertising or promotional
purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
member of the public at large and to the detriment of Affirmer's heirs and
successors, fully intending that such Waiver shall not be subject to
revocation, rescission, cancellation, termination, or any other legal or
equitable action to disrupt the quiet enjoyment of the Work by the public
as contemplated by Affirmer's express Statement of Purpose.
3. Public License Fallback. Should any part of the Waiver for any reason
be judged legally invalid or ineffective under applicable law, then the
Waiver shall be preserved to the maximum extent permitted taking into
account Affirmer's express Statement of Purpose. In addition, to the
extent the Waiver is so judged Affirmer hereby grants to each affected
person a royalty-free, non transferable, non sublicensable, non exclusive,
irrevocable and unconditional license to exercise Affirmer's Copyright and
Related Rights in the Work (i) in all territories worldwide, (ii) for the
maximum duration provided by applicable law or treaty (including future
time extensions), (iii) in any current or future medium and for any number
of copies, and (iv) for any purpose whatsoever, including without
limitation commercial, advertising or promotional purposes (the
"License"). The License shall be deemed effective as of the date CC0 was
applied by Affirmer to the Work. Should any part of the License for any
reason be judged legally invalid or ineffective under applicable law, such
partial invalidity or ineffectiveness shall not invalidate the remainder
of the License, and in such case Affirmer hereby affirms that he or she
will not (i) exercise any of his or her remaining Copyright and Related
Rights in the Work or (ii) assert any associated claims and causes of
action with respect to the Work, in either case contrary to Affirmer's
express Statement of Purpose.
4. Limitations and Disclaimers.
a. No trademark or patent rights held by Affirmer are waived, abandoned,
surrendered, licensed or otherwise affected by this document.
b. Affirmer offers the Work as-is and makes no representations or
warranties of any kind concerning the Work, express, implied,
statutory or otherwise, including without limitation warranties of
title, merchantability, fitness for a particular purpose, non
infringement, or the absence of latent or other defects, accuracy, or
the present or absence of errors, whether or not discoverable, all to
the greatest extent permissible under applicable law.
c. Affirmer disclaims responsibility for clearing rights of other persons
that may apply to the Work or any use thereof, including without
limitation any person's Copyright and Related Rights in the Work.
Further, Affirmer disclaims responsibility for obtaining any necessary
consents, permissions or other rights required for any use of the
Work.
d. Affirmer understands and acknowledges that Creative Commons is not a
party to this document and has no duty or obligation with respect to
this CC0 or use of the Work.

View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [2021] [SwinIR Authors]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [2021] [SwinIR Authors]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [2021] Samsung Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,161 @@
## creative commons
# Attribution-NonCommercial 4.0 International
Creative Commons Corporation (“Creative Commons”) is not a law firm and does not provide legal services or legal advice. Distribution of Creative Commons public licenses does not create a lawyer-client or other relationship. Creative Commons makes its licenses and related information available on an “as-is” basis. Creative Commons gives no warranties regarding its licenses, any material licensed under their terms and conditions, or any related information. Creative Commons disclaims all liability for damages resulting from their use to the fullest extent possible.
### Using Creative Commons Public Licenses
Creative Commons public licenses provide a standard set of terms and conditions that creators and other rights holders may use to share original works of authorship and other material subject to copyright and certain other rights specified in the public license below. The following considerations are for informational purposes only, are not exhaustive, and do not form part of our licenses.
* __Considerations for licensors:__ Our public licenses are intended for use by those authorized to give the public permission to use material in ways otherwise restricted by copyright and certain other rights. Our licenses are irrevocable. Licensors should read and understand the terms and conditions of the license they choose before applying it. Licensors should also secure all rights necessary before applying our licenses so that the public can reuse the material as expected. Licensors should clearly mark any material not subject to the license. This includes other CC-licensed material, or material used under an exception or limitation to copyright. [More considerations for licensors](http://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensors).
* __Considerations for the public:__ By using one of our public licenses, a licensor grants the public permission to use the licensed material under specified terms and conditions. If the licensors permission is not necessary for any reasonfor example, because of any applicable exception or limitation to copyrightthen that use is not regulated by the license. Our licenses grant only permissions under copyright and certain other rights that a licensor has authority to grant. Use of the licensed material may still be restricted for other reasons, including because others have copyright or other rights in the material. A licensor may make special requests, such as asking that all changes be marked or described. Although not required by our licenses, you are encouraged to respect those requests where reasonable. [More considerations for the public](http://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensees).
## Creative Commons Attribution-NonCommercial 4.0 International Public License
By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution-NonCommercial 4.0 International Public License ("Public License"). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions.
### Section 1 Definitions.
a. __Adapted Material__ means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image.
b. __Adapter's License__ means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted Material in accordance with the terms and conditions of this Public License.
c. __Copyright and Similar Rights__ means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.
d. __Effective Technological Measures__ means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.
e. __Exceptions and Limitations__ means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.
f. __Licensed Material__ means the artistic or literary work, database, or other material to which the Licensor applied this Public License.
g. __Licensed Rights__ means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license.
h. __Licensor__ means the individual(s) or entity(ies) granting rights under this Public License.
i. __NonCommercial__ means not primarily intended for or directed towards commercial advantage or monetary compensation. For purposes of this Public License, the exchange of the Licensed Material for other material subject to Copyright and Similar Rights by digital file-sharing or similar means is NonCommercial provided there is no payment of monetary compensation in connection with the exchange.
j. __Share__ means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them.
k. __Sui Generis Database Rights__ means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world.
l. __You__ means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning.
### Section 2 Scope.
a. ___License grant.___
1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to:
A. reproduce and Share the Licensed Material, in whole or in part, for NonCommercial purposes only; and
B. produce, reproduce, and Share Adapted Material for NonCommercial purposes only.
2. __Exceptions and Limitations.__ For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions.
3. __Term.__ The term of this Public License is specified in Section 6(a).
4. __Media and formats; technical modifications allowed.__ The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material.
5. __Downstream recipients.__
A. __Offer from the Licensor Licensed Material.__ Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License.
B. __No downstream restrictions.__ You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.
6. __No endorsement.__ Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).
b. ___Other rights.___
1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.
2. Patent and trademark rights are not licensed under this Public License.
3. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties, including when the Licensed Material is used other than for NonCommercial purposes.
### Section 3 License Conditions.
Your exercise of the Licensed Rights is expressly made subject to the following conditions.
a. ___Attribution.___
1. If You Share the Licensed Material (including in modified form), You must:
A. retain the following if it is supplied by the Licensor with the Licensed Material:
i. identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated);
ii. a copyright notice;
iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;
B. indicate if You modified the Licensed Material and retain an indication of any previous modifications; and
C. indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License.
2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information.
3. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable.
4. If You Share Adapted Material You produce, the Adapter's License You apply must not prevent recipients of the Adapted Material from complying with this Public License.
### Section 4 Sui Generis Database Rights.
Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:
a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database for NonCommercial purposes only;
b. if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material; and
c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database.
For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights.
### Section 5 Disclaimer of Warranties and Limitation of Liability.
a. __Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.__
b. __To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.__
c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.
### Section 6 Term and Termination.
a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this Public License, then Your rights under this Public License terminate automatically.
b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:
1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or
2. upon express reinstatement by the Licensor.
For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of this Public License.
c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.
### Section 7 Other Terms and Conditions.
a. The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed.
b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent of the terms and conditions of this Public License.
### Section 8 Interpretation.
a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without permission under this Public License.
b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License without affecting the enforceability of the remaining terms and conditions.
c. No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the Licensor.
d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.
> Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to apply one of its public licenses to material it publishes and in those instances will be considered the “Licensor.” Except for the limited purpose of indicating that material is shared under a Creative Commons public license or as otherwise permitted by the Creative Commons policies published at [creativecommons.org/policies](http://creativecommons.org/policies), Creative Commons does not authorize the use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons without its prior written consent including, without limitation, in connection with any unauthorized modifications to any of its public licenses or any other arrangements, understandings, or agreements concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part of the public licenses.
>
> Creative Commons may be contacted at creativecommons.org

View File

@ -0,0 +1,694 @@
# pylint: skip-file
"""
Model adapted from advimman's lama project: https://github.com/advimman/lama
"""
# Fast Fourier Convolution NeurIPS 2020
# original implementation https://github.com/pkumivision/FFC/blob/main/model_zoo/ffc.py
# paper https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf
from typing import List
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms.functional import InterpolationMode, rotate
class LearnableSpatialTransformWrapper(nn.Module):
def __init__(self, impl, pad_coef=0.5, angle_init_range=80, train_angle=True):
super().__init__()
self.impl = impl
self.angle = torch.rand(1) * angle_init_range
if train_angle:
self.angle = nn.Parameter(self.angle, requires_grad=True)
self.pad_coef = pad_coef
def forward(self, x):
if torch.is_tensor(x):
return self.inverse_transform(self.impl(self.transform(x)), x)
elif isinstance(x, tuple):
x_trans = tuple(self.transform(elem) for elem in x)
y_trans = self.impl(x_trans)
return tuple(
self.inverse_transform(elem, orig_x) for elem, orig_x in zip(y_trans, x)
)
else:
raise ValueError(f"Unexpected input type {type(x)}")
def transform(self, x):
height, width = x.shape[2:]
pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef)
x_padded = F.pad(x, [pad_w, pad_w, pad_h, pad_h], mode="reflect")
x_padded_rotated = rotate(
x_padded, self.angle.to(x_padded), InterpolationMode.BILINEAR, fill=0
)
return x_padded_rotated
def inverse_transform(self, y_padded_rotated, orig_x):
height, width = orig_x.shape[2:]
pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef)
y_padded = rotate(
y_padded_rotated,
-self.angle.to(y_padded_rotated),
InterpolationMode.BILINEAR,
fill=0,
)
y_height, y_width = y_padded.shape[2:]
y = y_padded[:, :, pad_h : y_height - pad_h, pad_w : y_width - pad_w]
return y
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid(),
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
res = x * y.expand_as(x)
return res
class FourierUnit(nn.Module):
def __init__(
self,
in_channels,
out_channels,
groups=1,
spatial_scale_factor=None,
spatial_scale_mode="bilinear",
spectral_pos_encoding=False,
use_se=False,
se_kwargs=None,
ffc3d=False,
fft_norm="ortho",
):
# bn_layer not used
super(FourierUnit, self).__init__()
self.groups = groups
self.conv_layer = torch.nn.Conv2d(
in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0),
out_channels=out_channels * 2,
kernel_size=1,
stride=1,
padding=0,
groups=self.groups,
bias=False,
)
self.bn = torch.nn.BatchNorm2d(out_channels * 2)
self.relu = torch.nn.ReLU(inplace=True)
# squeeze and excitation block
self.use_se = use_se
if use_se:
if se_kwargs is None:
se_kwargs = {}
self.se = SELayer(self.conv_layer.in_channels, **se_kwargs)
self.spatial_scale_factor = spatial_scale_factor
self.spatial_scale_mode = spatial_scale_mode
self.spectral_pos_encoding = spectral_pos_encoding
self.ffc3d = ffc3d
self.fft_norm = fft_norm
def forward(self, x):
half_check = False
if x.type() == "torch.cuda.HalfTensor":
# half only works on gpu anyway
half_check = True
batch = x.shape[0]
if self.spatial_scale_factor is not None:
orig_size = x.shape[-2:]
x = F.interpolate(
x,
scale_factor=self.spatial_scale_factor,
mode=self.spatial_scale_mode,
align_corners=False,
)
# (batch, c, h, w/2+1, 2)
fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1)
if half_check == True:
ffted = torch.fft.rfftn(
x.float(), dim=fft_dim, norm=self.fft_norm
) # .type(torch.cuda.HalfTensor)
else:
ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm)
ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1)
ffted = ffted.view(
(
batch,
-1,
)
+ ffted.size()[3:]
)
if self.spectral_pos_encoding:
height, width = ffted.shape[-2:]
coords_vert = (
torch.linspace(0, 1, height)[None, None, :, None]
.expand(batch, 1, height, width)
.to(ffted)
)
coords_hor = (
torch.linspace(0, 1, width)[None, None, None, :]
.expand(batch, 1, height, width)
.to(ffted)
)
ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1)
if self.use_se:
ffted = self.se(ffted)
if half_check == True:
ffted = self.conv_layer(ffted.half()) # (batch, c*2, h, w/2+1)
else:
ffted = self.conv_layer(
ffted
) # .type(torch.cuda.FloatTensor) # (batch, c*2, h, w/2+1)
ffted = self.relu(self.bn(ffted))
# forcing to be always float
ffted = ffted.float()
ffted = (
ffted.view(
(
batch,
-1,
2,
)
+ ffted.size()[2:]
)
.permute(0, 1, 3, 4, 2)
.contiguous()
) # (batch,c, t, h, w/2+1, 2)
ffted = torch.complex(ffted[..., 0], ffted[..., 1])
ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:]
output = torch.fft.irfftn(
ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm
)
if half_check == True:
output = output.half()
if self.spatial_scale_factor is not None:
output = F.interpolate(
output,
size=orig_size,
mode=self.spatial_scale_mode,
align_corners=False,
)
return output
class SpectralTransform(nn.Module):
def __init__(
self,
in_channels,
out_channels,
stride=1,
groups=1,
enable_lfu=True,
separable_fu=False,
**fu_kwargs,
):
# bn_layer not used
super(SpectralTransform, self).__init__()
self.enable_lfu = enable_lfu
if stride == 2:
self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
else:
self.downsample = nn.Identity()
self.stride = stride
self.conv1 = nn.Sequential(
nn.Conv2d(
in_channels, out_channels // 2, kernel_size=1, groups=groups, bias=False
),
nn.BatchNorm2d(out_channels // 2),
nn.ReLU(inplace=True),
)
fu_class = FourierUnit
self.fu = fu_class(out_channels // 2, out_channels // 2, groups, **fu_kwargs)
if self.enable_lfu:
self.lfu = fu_class(out_channels // 2, out_channels // 2, groups)
self.conv2 = torch.nn.Conv2d(
out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False
)
def forward(self, x):
x = self.downsample(x)
x = self.conv1(x)
output = self.fu(x)
if self.enable_lfu:
_, c, h, _ = x.shape
split_no = 2
split_s = h // split_no
xs = torch.cat(
torch.split(x[:, : c // 4], split_s, dim=-2), dim=1
).contiguous()
xs = torch.cat(torch.split(xs, split_s, dim=-1), dim=1).contiguous()
xs = self.lfu(xs)
xs = xs.repeat(1, 1, split_no, split_no).contiguous()
else:
xs = 0
output = self.conv2(x + output + xs)
return output
class FFC(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
ratio_gin,
ratio_gout,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=False,
enable_lfu=True,
padding_type="reflect",
gated=False,
**spectral_kwargs,
):
super(FFC, self).__init__()
assert stride == 1 or stride == 2, "Stride should be 1 or 2."
self.stride = stride
in_cg = int(in_channels * ratio_gin)
in_cl = in_channels - in_cg
out_cg = int(out_channels * ratio_gout)
out_cl = out_channels - out_cg
# groups_g = 1 if groups == 1 else int(groups * ratio_gout)
# groups_l = 1 if groups == 1 else groups - groups_g
self.ratio_gin = ratio_gin
self.ratio_gout = ratio_gout
self.global_in_num = in_cg
module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
self.convl2l = module(
in_cl,
out_cl,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
padding_mode=padding_type,
)
module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
self.convl2g = module(
in_cl,
out_cg,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
padding_mode=padding_type,
)
module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
self.convg2l = module(
in_cg,
out_cl,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
padding_mode=padding_type,
)
module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
self.convg2g = module(
in_cg,
out_cg,
stride,
1 if groups == 1 else groups // 2,
enable_lfu,
**spectral_kwargs,
)
self.gated = gated
module = (
nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
)
self.gate = module(in_channels, 2, 1)
def forward(self, x):
x_l, x_g = x if type(x) is tuple else (x, 0)
out_xl, out_xg = 0, 0
if self.gated:
total_input_parts = [x_l]
if torch.is_tensor(x_g):
total_input_parts.append(x_g)
total_input = torch.cat(total_input_parts, dim=1)
gates = torch.sigmoid(self.gate(total_input))
g2l_gate, l2g_gate = gates.chunk(2, dim=1)
else:
g2l_gate, l2g_gate = 1, 1
if self.ratio_gout != 1:
out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
if self.ratio_gout != 0:
out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g)
return out_xl, out_xg
class FFC_BN_ACT(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
ratio_gin,
ratio_gout,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=False,
norm_layer=nn.BatchNorm2d,
activation_layer=nn.Identity,
padding_type="reflect",
enable_lfu=True,
**kwargs,
):
super(FFC_BN_ACT, self).__init__()
self.ffc = FFC(
in_channels,
out_channels,
kernel_size,
ratio_gin,
ratio_gout,
stride,
padding,
dilation,
groups,
bias,
enable_lfu,
padding_type=padding_type,
**kwargs,
)
lnorm = nn.Identity if ratio_gout == 1 else norm_layer
gnorm = nn.Identity if ratio_gout == 0 else norm_layer
global_channels = int(out_channels * ratio_gout)
self.bn_l = lnorm(out_channels - global_channels)
self.bn_g = gnorm(global_channels)
lact = nn.Identity if ratio_gout == 1 else activation_layer
gact = nn.Identity if ratio_gout == 0 else activation_layer
self.act_l = lact(inplace=True)
self.act_g = gact(inplace=True)
def forward(self, x):
x_l, x_g = self.ffc(x)
x_l = self.act_l(self.bn_l(x_l))
x_g = self.act_g(self.bn_g(x_g))
return x_l, x_g
class FFCResnetBlock(nn.Module):
def __init__(
self,
dim,
padding_type,
norm_layer,
activation_layer=nn.ReLU,
dilation=1,
spatial_transform_kwargs=None,
inline=False,
**conv_kwargs,
):
super().__init__()
self.conv1 = FFC_BN_ACT(
dim,
dim,
kernel_size=3,
padding=dilation,
dilation=dilation,
norm_layer=norm_layer,
activation_layer=activation_layer,
padding_type=padding_type,
**conv_kwargs,
)
self.conv2 = FFC_BN_ACT(
dim,
dim,
kernel_size=3,
padding=dilation,
dilation=dilation,
norm_layer=norm_layer,
activation_layer=activation_layer,
padding_type=padding_type,
**conv_kwargs,
)
if spatial_transform_kwargs is not None:
self.conv1 = LearnableSpatialTransformWrapper(
self.conv1, **spatial_transform_kwargs
)
self.conv2 = LearnableSpatialTransformWrapper(
self.conv2, **spatial_transform_kwargs
)
self.inline = inline
def forward(self, x):
if self.inline:
x_l, x_g = (
x[:, : -self.conv1.ffc.global_in_num],
x[:, -self.conv1.ffc.global_in_num :],
)
else:
x_l, x_g = x if type(x) is tuple else (x, 0)
id_l, id_g = x_l, x_g
x_l, x_g = self.conv1((x_l, x_g))
x_l, x_g = self.conv2((x_l, x_g))
x_l, x_g = id_l + x_l, id_g + x_g
out = x_l, x_g
if self.inline:
out = torch.cat(out, dim=1)
return out
class ConcatTupleLayer(nn.Module):
def forward(self, x):
assert isinstance(x, tuple)
x_l, x_g = x
assert torch.is_tensor(x_l) or torch.is_tensor(x_g)
if not torch.is_tensor(x_g):
return x_l
return torch.cat(x, dim=1)
class FFCResNetGenerator(nn.Module):
def __init__(
self,
input_nc,
output_nc,
ngf=64,
n_downsampling=3,
n_blocks=18,
norm_layer=nn.BatchNorm2d,
padding_type="reflect",
activation_layer=nn.ReLU,
up_norm_layer=nn.BatchNorm2d,
up_activation=nn.ReLU(True),
init_conv_kwargs={},
downsample_conv_kwargs={},
resnet_conv_kwargs={},
spatial_transform_layers=None,
spatial_transform_kwargs={},
max_features=1024,
out_ffc=False,
out_ffc_kwargs={},
):
assert n_blocks >= 0
super().__init__()
"""
init_conv_kwargs = {'ratio_gin': 0, 'ratio_gout': 0, 'enable_lfu': False}
downsample_conv_kwargs = {'ratio_gin': '${generator.init_conv_kwargs.ratio_gout}', 'ratio_gout': '${generator.downsample_conv_kwargs.ratio_gin}', 'enable_lfu': False}
resnet_conv_kwargs = {'ratio_gin': 0.75, 'ratio_gout': '${generator.resnet_conv_kwargs.ratio_gin}', 'enable_lfu': False}
spatial_transform_kwargs = {}
out_ffc_kwargs = {}
"""
"""
print(input_nc, output_nc, ngf, n_downsampling, n_blocks, norm_layer,
padding_type, activation_layer,
up_norm_layer, up_activation,
spatial_transform_layers,
add_out_act, max_features, out_ffc, file=sys.stderr)
4 3 64 3 18 <class 'torch.nn.modules.batchnorm.BatchNorm2d'>
reflect <class 'torch.nn.modules.activation.ReLU'>
<class 'torch.nn.modules.batchnorm.BatchNorm2d'>
ReLU(inplace=True)
None sigmoid 1024 False
"""
init_conv_kwargs = {"ratio_gin": 0, "ratio_gout": 0, "enable_lfu": False}
downsample_conv_kwargs = {"ratio_gin": 0, "ratio_gout": 0, "enable_lfu": False}
resnet_conv_kwargs = {
"ratio_gin": 0.75,
"ratio_gout": 0.75,
"enable_lfu": False,
}
spatial_transform_kwargs = {}
out_ffc_kwargs = {}
model = [
nn.ReflectionPad2d(3),
FFC_BN_ACT(
input_nc,
ngf,
kernel_size=7,
padding=0,
norm_layer=norm_layer,
activation_layer=activation_layer,
**init_conv_kwargs,
),
]
### downsample
for i in range(n_downsampling):
mult = 2**i
if i == n_downsampling - 1:
cur_conv_kwargs = dict(downsample_conv_kwargs)
cur_conv_kwargs["ratio_gout"] = resnet_conv_kwargs.get("ratio_gin", 0)
else:
cur_conv_kwargs = downsample_conv_kwargs
model += [
FFC_BN_ACT(
min(max_features, ngf * mult),
min(max_features, ngf * mult * 2),
kernel_size=3,
stride=2,
padding=1,
norm_layer=norm_layer,
activation_layer=activation_layer,
**cur_conv_kwargs,
)
]
mult = 2**n_downsampling
feats_num_bottleneck = min(max_features, ngf * mult)
### resnet blocks
for i in range(n_blocks):
cur_resblock = FFCResnetBlock(
feats_num_bottleneck,
padding_type=padding_type,
activation_layer=activation_layer,
norm_layer=norm_layer,
**resnet_conv_kwargs,
)
if spatial_transform_layers is not None and i in spatial_transform_layers:
cur_resblock = LearnableSpatialTransformWrapper(
cur_resblock, **spatial_transform_kwargs
)
model += [cur_resblock]
model += [ConcatTupleLayer()]
### upsample
for i in range(n_downsampling):
mult = 2 ** (n_downsampling - i)
model += [
nn.ConvTranspose2d(
min(max_features, ngf * mult),
min(max_features, int(ngf * mult / 2)),
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
),
up_norm_layer(min(max_features, int(ngf * mult / 2))),
up_activation,
]
if out_ffc:
model += [
FFCResnetBlock(
ngf,
padding_type=padding_type,
activation_layer=activation_layer,
norm_layer=norm_layer,
inline=True,
**out_ffc_kwargs,
)
]
model += [
nn.ReflectionPad2d(3),
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0),
]
model.append(nn.Sigmoid())
self.model = nn.Sequential(*model)
def forward(self, image, mask):
return self.model(torch.cat([image, mask], dim=1))
class LaMa(nn.Module):
def __init__(self, state_dict) -> None:
super(LaMa, self).__init__()
self.model_arch = "LaMa"
self.sub_type = "Inpaint"
self.in_nc = 4
self.out_nc = 3
self.scale = 1
self.min_size = None
self.pad_mod = 8
self.pad_to_square = False
self.model = FFCResNetGenerator(self.in_nc, self.out_nc)
self.state = {
k.replace("generator.model", "model.model"): v
for k, v in state_dict.items()
}
self.supports_fp16 = False
self.support_bf16 = True
self.load_state_dict(self.state, strict=False)
def forward(self, img, mask):
masked_img = img * (1 - mask)
inpainted_mask = mask * self.model.forward(masked_img, mask)
result = inpainted_mask + (1 - mask) * img
return result

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,281 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import functools
import math
import re
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from . import block as B
# Borrowed from https://github.com/rlaphoenix/VSGAN/blob/master/vsgan/archs/ESRGAN.py
# Which enhanced stuff that was already here
class RRDBNet(nn.Module):
def __init__(
self,
state_dict,
norm=None,
act: str = "leakyrelu",
upsampler: str = "upconv",
mode: B.ConvMode = "CNA",
) -> None:
"""
ESRGAN - Enhanced Super-Resolution Generative Adversarial Networks.
By Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,
and Chen Change Loy.
This is old-arch Residual in Residual Dense Block Network and is not
the newest revision that's available at github.com/xinntao/ESRGAN.
This is on purpose, the newest Network has severely limited the
potential use of the Network with no benefits.
This network supports model files from both new and old-arch.
Args:
norm: Normalization layer
act: Activation layer
upsampler: Upsample layer. upconv, pixel_shuffle
mode: Convolution mode
"""
super(RRDBNet, self).__init__()
self.model_arch = "ESRGAN"
self.sub_type = "SR"
self.state = state_dict
self.norm = norm
self.act = act
self.upsampler = upsampler
self.mode = mode
self.state_map = {
# currently supports old, new, and newer RRDBNet arch models
# ESRGAN, BSRGAN/RealSR, Real-ESRGAN
"model.0.weight": ("conv_first.weight",),
"model.0.bias": ("conv_first.bias",),
"model.1.sub./NB/.weight": ("trunk_conv.weight", "conv_body.weight"),
"model.1.sub./NB/.bias": ("trunk_conv.bias", "conv_body.bias"),
r"model.1.sub.\1.RDB\2.conv\3.0.\4": (
r"RRDB_trunk\.(\d+)\.RDB(\d)\.conv(\d+)\.(weight|bias)",
r"body\.(\d+)\.rdb(\d)\.conv(\d+)\.(weight|bias)",
),
}
if "params_ema" in self.state:
self.state = self.state["params_ema"]
# self.model_arch = "RealESRGAN"
self.num_blocks = self.get_num_blocks()
self.plus = any("conv1x1" in k for k in self.state.keys())
if self.plus:
self.model_arch = "ESRGAN+"
self.state = self.new_to_old_arch(self.state)
self.key_arr = list(self.state.keys())
self.in_nc: int = self.state[self.key_arr[0]].shape[1]
self.out_nc: int = self.state[self.key_arr[-1]].shape[0]
self.scale: int = self.get_scale()
self.num_filters: int = self.state[self.key_arr[0]].shape[0]
self.supports_fp16 = True
self.supports_bfp16 = True
self.min_size_restriction = None
# Detect if pixelunshuffle was used (Real-ESRGAN)
if self.in_nc in (self.out_nc * 4, self.out_nc * 16) and self.out_nc in (
self.in_nc / 4,
self.in_nc / 16,
):
self.shuffle_factor = int(math.sqrt(self.in_nc / self.out_nc))
else:
self.shuffle_factor = None
upsample_block = {
"upconv": B.upconv_block,
"pixel_shuffle": B.pixelshuffle_block,
}.get(self.upsampler)
if upsample_block is None:
raise NotImplementedError(f"Upsample mode [{self.upsampler}] is not found")
if self.scale == 3:
upsample_blocks = upsample_block(
in_nc=self.num_filters,
out_nc=self.num_filters,
upscale_factor=3,
act_type=self.act,
)
else:
upsample_blocks = [
upsample_block(
in_nc=self.num_filters, out_nc=self.num_filters, act_type=self.act
)
for _ in range(int(math.log(self.scale, 2)))
]
self.model = B.sequential(
# fea conv
B.conv_block(
in_nc=self.in_nc,
out_nc=self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
),
B.ShortcutBlock(
B.sequential(
# rrdb blocks
*[
B.RRDB(
nf=self.num_filters,
kernel_size=3,
gc=32,
stride=1,
bias=True,
pad_type="zero",
norm_type=self.norm,
act_type=self.act,
mode="CNA",
plus=self.plus,
)
for _ in range(self.num_blocks)
],
# lr conv
B.conv_block(
in_nc=self.num_filters,
out_nc=self.num_filters,
kernel_size=3,
norm_type=self.norm,
act_type=None,
mode=self.mode,
),
)
),
*upsample_blocks,
# hr_conv0
B.conv_block(
in_nc=self.num_filters,
out_nc=self.num_filters,
kernel_size=3,
norm_type=None,
act_type=self.act,
),
# hr_conv1
B.conv_block(
in_nc=self.num_filters,
out_nc=self.out_nc,
kernel_size=3,
norm_type=None,
act_type=None,
),
)
# Adjust these properties for calculations outside of the model
if self.shuffle_factor:
self.in_nc //= self.shuffle_factor**2
self.scale //= self.shuffle_factor
self.load_state_dict(self.state, strict=False)
def new_to_old_arch(self, state):
"""Convert a new-arch model state dictionary to an old-arch dictionary."""
if "params_ema" in state:
state = state["params_ema"]
if "conv_first.weight" not in state:
# model is already old arch, this is a loose check, but should be sufficient
return state
# add nb to state keys
for kind in ("weight", "bias"):
self.state_map[f"model.1.sub.{self.num_blocks}.{kind}"] = self.state_map[
f"model.1.sub./NB/.{kind}"
]
del self.state_map[f"model.1.sub./NB/.{kind}"]
old_state = OrderedDict()
for old_key, new_keys in self.state_map.items():
for new_key in new_keys:
if r"\1" in old_key:
for k, v in state.items():
sub = re.sub(new_key, old_key, k)
if sub != k:
old_state[sub] = v
else:
if new_key in state:
old_state[old_key] = state[new_key]
# upconv layers
max_upconv = 0
for key in state.keys():
match = re.match(r"(upconv|conv_up)(\d)\.(weight|bias)", key)
if match is not None:
_, key_num, key_type = match.groups()
old_state[f"model.{int(key_num) * 3}.{key_type}"] = state[key]
max_upconv = max(max_upconv, int(key_num) * 3)
# final layers
for key in state.keys():
if key in ("HRconv.weight", "conv_hr.weight"):
old_state[f"model.{max_upconv + 2}.weight"] = state[key]
elif key in ("HRconv.bias", "conv_hr.bias"):
old_state[f"model.{max_upconv + 2}.bias"] = state[key]
elif key in ("conv_last.weight",):
old_state[f"model.{max_upconv + 4}.weight"] = state[key]
elif key in ("conv_last.bias",):
old_state[f"model.{max_upconv + 4}.bias"] = state[key]
# Sort by first numeric value of each layer
def compare(item1, item2):
parts1 = item1.split(".")
parts2 = item2.split(".")
int1 = int(parts1[1])
int2 = int(parts2[1])
return int1 - int2
sorted_keys = sorted(old_state.keys(), key=functools.cmp_to_key(compare))
# Rebuild the output dict in the right order
out_dict = OrderedDict((k, old_state[k]) for k in sorted_keys)
return out_dict
def get_scale(self, min_part: int = 6) -> int:
n = 0
for part in list(self.state):
parts = part.split(".")[1:]
if len(parts) == 2:
part_num = int(parts[0])
if part_num > min_part and parts[1] == "weight":
n += 1
return 2**n
def get_num_blocks(self) -> int:
nbs = []
state_keys = self.state_map[r"model.1.sub.\1.RDB\2.conv\3.0.\4"] + (
r"model\.\d+\.sub\.(\d+)\.RDB(\d+)\.conv(\d+)\.0\.(weight|bias)",
)
for state_key in state_keys:
for k in self.state:
m = re.search(state_key, k)
if m:
nbs.append(int(m.group(1)))
if nbs:
break
return max(*nbs) + 1
def forward(self, x):
if self.shuffle_factor:
_, _, h, w = x.size()
mod_pad_h = (
self.shuffle_factor - h % self.shuffle_factor
) % self.shuffle_factor
mod_pad_w = (
self.shuffle_factor - w % self.shuffle_factor
) % self.shuffle_factor
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect")
x = torch.pixel_unshuffle(x, downscale_factor=self.shuffle_factor)
x = self.model(x)
return x[:, :, : h * self.scale, : w * self.scale]
return self.model(x)

View File

@ -0,0 +1,384 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from . import block as B
class Get_gradient_nopadding(nn.Module):
def __init__(self):
super(Get_gradient_nopadding, self).__init__()
kernel_v = [[0, -1, 0], [0, 0, 0], [0, 1, 0]]
kernel_h = [[0, 0, 0], [-1, 0, 1], [0, 0, 0]]
kernel_h = torch.FloatTensor(kernel_h).unsqueeze(0).unsqueeze(0)
kernel_v = torch.FloatTensor(kernel_v).unsqueeze(0).unsqueeze(0)
self.weight_h = nn.Parameter(data=kernel_h, requires_grad=False) # type: ignore
self.weight_v = nn.Parameter(data=kernel_v, requires_grad=False) # type: ignore
def forward(self, x):
x_list = []
for i in range(x.shape[1]):
x_i = x[:, i]
x_i_v = F.conv2d(x_i.unsqueeze(1), self.weight_v, padding=1)
x_i_h = F.conv2d(x_i.unsqueeze(1), self.weight_h, padding=1)
x_i = torch.sqrt(torch.pow(x_i_v, 2) + torch.pow(x_i_h, 2) + 1e-6)
x_list.append(x_i)
x = torch.cat(x_list, dim=1)
return x
class SPSRNet(nn.Module):
def __init__(
self,
state_dict,
norm=None,
act: str = "leakyrelu",
upsampler: str = "upconv",
mode: B.ConvMode = "CNA",
):
super(SPSRNet, self).__init__()
self.model_arch = "SPSR"
self.sub_type = "SR"
self.state = state_dict
self.norm = norm
self.act = act
self.upsampler = upsampler
self.mode = mode
self.num_blocks = self.get_num_blocks()
self.in_nc: int = self.state["model.0.weight"].shape[1]
self.out_nc: int = self.state["f_HR_conv1.0.bias"].shape[0]
self.scale = self.get_scale(4)
print(self.scale)
self.num_filters: int = self.state["model.0.weight"].shape[0]
self.supports_fp16 = True
self.supports_bfp16 = True
self.min_size_restriction = None
n_upscale = int(math.log(self.scale, 2))
if self.scale == 3:
n_upscale = 1
fea_conv = B.conv_block(
self.in_nc, self.num_filters, kernel_size=3, norm_type=None, act_type=None
)
rb_blocks = [
B.RRDB(
self.num_filters,
kernel_size=3,
gc=32,
stride=1,
bias=True,
pad_type="zero",
norm_type=norm,
act_type=act,
mode="CNA",
)
for _ in range(self.num_blocks)
]
LR_conv = B.conv_block(
self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=norm,
act_type=None,
mode=mode,
)
if upsampler == "upconv":
upsample_block = B.upconv_block
elif upsampler == "pixelshuffle":
upsample_block = B.pixelshuffle_block
else:
raise NotImplementedError(f"upsample mode [{upsampler}] is not found")
if self.scale == 3:
a_upsampler = upsample_block(
self.num_filters, self.num_filters, 3, act_type=act
)
else:
a_upsampler = [
upsample_block(self.num_filters, self.num_filters, act_type=act)
for _ in range(n_upscale)
]
self.HR_conv0_new = B.conv_block(
self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=act,
)
self.HR_conv1_new = B.conv_block(
self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
)
self.model = B.sequential(
fea_conv,
B.ShortcutBlockSPSR(B.sequential(*rb_blocks, LR_conv)),
*a_upsampler,
self.HR_conv0_new,
)
self.get_g_nopadding = Get_gradient_nopadding()
self.b_fea_conv = B.conv_block(
self.in_nc, self.num_filters, kernel_size=3, norm_type=None, act_type=None
)
self.b_concat_1 = B.conv_block(
2 * self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
)
self.b_block_1 = B.RRDB(
self.num_filters * 2,
kernel_size=3,
gc=32,
stride=1,
bias=True,
pad_type="zero",
norm_type=norm,
act_type=act,
mode="CNA",
)
self.b_concat_2 = B.conv_block(
2 * self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
)
self.b_block_2 = B.RRDB(
self.num_filters * 2,
kernel_size=3,
gc=32,
stride=1,
bias=True,
pad_type="zero",
norm_type=norm,
act_type=act,
mode="CNA",
)
self.b_concat_3 = B.conv_block(
2 * self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
)
self.b_block_3 = B.RRDB(
self.num_filters * 2,
kernel_size=3,
gc=32,
stride=1,
bias=True,
pad_type="zero",
norm_type=norm,
act_type=act,
mode="CNA",
)
self.b_concat_4 = B.conv_block(
2 * self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
)
self.b_block_4 = B.RRDB(
self.num_filters * 2,
kernel_size=3,
gc=32,
stride=1,
bias=True,
pad_type="zero",
norm_type=norm,
act_type=act,
mode="CNA",
)
self.b_LR_conv = B.conv_block(
self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=norm,
act_type=None,
mode=mode,
)
if upsampler == "upconv":
upsample_block = B.upconv_block
elif upsampler == "pixelshuffle":
upsample_block = B.pixelshuffle_block
else:
raise NotImplementedError(f"upsample mode [{upsampler}] is not found")
if self.scale == 3:
b_upsampler = upsample_block(
self.num_filters, self.num_filters, 3, act_type=act
)
else:
b_upsampler = [
upsample_block(self.num_filters, self.num_filters, act_type=act)
for _ in range(n_upscale)
]
b_HR_conv0 = B.conv_block(
self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=act,
)
b_HR_conv1 = B.conv_block(
self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
)
self.b_module = B.sequential(*b_upsampler, b_HR_conv0, b_HR_conv1)
self.conv_w = B.conv_block(
self.num_filters, self.out_nc, kernel_size=1, norm_type=None, act_type=None
)
self.f_concat = B.conv_block(
self.num_filters * 2,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
)
self.f_block = B.RRDB(
self.num_filters * 2,
kernel_size=3,
gc=32,
stride=1,
bias=True,
pad_type="zero",
norm_type=norm,
act_type=act,
mode="CNA",
)
self.f_HR_conv0 = B.conv_block(
self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=act,
)
self.f_HR_conv1 = B.conv_block(
self.num_filters, self.out_nc, kernel_size=3, norm_type=None, act_type=None
)
self.load_state_dict(self.state, strict=False)
def get_scale(self, min_part: int = 4) -> int:
n = 0
for part in list(self.state):
parts = part.split(".")
if len(parts) == 3:
part_num = int(parts[1])
if part_num > min_part and parts[0] == "model" and parts[2] == "weight":
n += 1
return 2**n
def get_num_blocks(self) -> int:
nb = 0
for part in list(self.state):
parts = part.split(".")
n_parts = len(parts)
if n_parts == 5 and parts[2] == "sub":
nb = int(parts[3])
return nb
def forward(self, x):
x_grad = self.get_g_nopadding(x)
x = self.model[0](x)
x, block_list = self.model[1](x)
x_ori = x
for i in range(5):
x = block_list[i](x)
x_fea1 = x
for i in range(5):
x = block_list[i + 5](x)
x_fea2 = x
for i in range(5):
x = block_list[i + 10](x)
x_fea3 = x
for i in range(5):
x = block_list[i + 15](x)
x_fea4 = x
x = block_list[20:](x)
# short cut
x = x_ori + x
x = self.model[2:](x)
x = self.HR_conv1_new(x)
x_b_fea = self.b_fea_conv(x_grad)
x_cat_1 = torch.cat([x_b_fea, x_fea1], dim=1)
x_cat_1 = self.b_block_1(x_cat_1)
x_cat_1 = self.b_concat_1(x_cat_1)
x_cat_2 = torch.cat([x_cat_1, x_fea2], dim=1)
x_cat_2 = self.b_block_2(x_cat_2)
x_cat_2 = self.b_concat_2(x_cat_2)
x_cat_3 = torch.cat([x_cat_2, x_fea3], dim=1)
x_cat_3 = self.b_block_3(x_cat_3)
x_cat_3 = self.b_concat_3(x_cat_3)
x_cat_4 = torch.cat([x_cat_3, x_fea4], dim=1)
x_cat_4 = self.b_block_4(x_cat_4)
x_cat_4 = self.b_concat_4(x_cat_4)
x_cat_4 = self.b_LR_conv(x_cat_4)
# short cut
x_cat_4 = x_cat_4 + x_b_fea
x_branch = self.b_module(x_cat_4)
# x_out_branch = self.conv_w(x_branch)
########
x_branch_d = x_branch
x_f_cat = torch.cat([x_branch_d, x], dim=1)
x_f_cat = self.f_block(x_f_cat)
x_out = self.f_concat(x_f_cat)
x_out = self.f_HR_conv0(x_out)
x_out = self.f_HR_conv1(x_out)
#########
# return x_out_branch, x_out, x_grad
return x_out

View File

@ -0,0 +1,114 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math
import torch.nn as nn
import torch.nn.functional as F
class SRVGGNetCompact(nn.Module):
"""A compact VGG-style network structure for super-resolution.
It is a compact network structure, which performs upsampling in the last layer and no convolution is
conducted on the HR feature space.
Args:
num_in_ch (int): Channel number of inputs. Default: 3.
num_out_ch (int): Channel number of outputs. Default: 3.
num_feat (int): Channel number of intermediate features. Default: 64.
num_conv (int): Number of convolution layers in the body network. Default: 16.
upscale (int): Upsampling factor. Default: 4.
act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu.
"""
def __init__(
self,
state_dict,
act_type: str = "prelu",
):
super(SRVGGNetCompact, self).__init__()
self.model_arch = "SRVGG (RealESRGAN)"
self.sub_type = "SR"
self.act_type = act_type
self.state = state_dict
if "params" in self.state:
self.state = self.state["params"]
self.key_arr = list(self.state.keys())
self.in_nc = self.get_in_nc()
self.num_feat = self.get_num_feats()
self.num_conv = self.get_num_conv()
self.out_nc = self.in_nc # :(
self.pixelshuffle_shape = None # Defined in get_scale()
self.scale = self.get_scale()
self.supports_fp16 = True
self.supports_bfp16 = True
self.min_size_restriction = None
self.body = nn.ModuleList()
# the first conv
self.body.append(nn.Conv2d(self.in_nc, self.num_feat, 3, 1, 1))
# the first activation
if act_type == "relu":
activation = nn.ReLU(inplace=True)
elif act_type == "prelu":
activation = nn.PReLU(num_parameters=self.num_feat)
elif act_type == "leakyrelu":
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.body.append(activation) # type: ignore
# the body structure
for _ in range(self.num_conv):
self.body.append(nn.Conv2d(self.num_feat, self.num_feat, 3, 1, 1))
# activation
if act_type == "relu":
activation = nn.ReLU(inplace=True)
elif act_type == "prelu":
activation = nn.PReLU(num_parameters=self.num_feat)
elif act_type == "leakyrelu":
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.body.append(activation) # type: ignore
# the last conv
self.body.append(nn.Conv2d(self.num_feat, self.pixelshuffle_shape, 3, 1, 1)) # type: ignore
# upsample
self.upsampler = nn.PixelShuffle(self.scale)
self.load_state_dict(self.state, strict=False)
def get_num_conv(self) -> int:
return (int(self.key_arr[-1].split(".")[1]) - 2) // 2
def get_num_feats(self) -> int:
return self.state[self.key_arr[0]].shape[0]
def get_in_nc(self) -> int:
return self.state[self.key_arr[0]].shape[1]
def get_scale(self) -> int:
self.pixelshuffle_shape = self.state[self.key_arr[-1]].shape[0]
# Assume out_nc is the same as in_nc
# I cant think of a better way to do that
self.out_nc = self.in_nc
scale = math.sqrt(self.pixelshuffle_shape / self.out_nc)
if scale - int(scale) > 0:
print(
"out_nc is probably different than in_nc, scale calculation might be wrong"
)
scale = int(scale)
return scale
def forward(self, x):
out = x
for i in range(0, len(self.body)):
out = self.body[i](out)
out = self.upsampler(out)
# add the nearest upsampled image, so that the network learns the residual
base = F.interpolate(x, scale_factor=self.scale, mode="nearest")
out += base
return out

View File

@ -0,0 +1,161 @@
# From https://github.com/Koushik0901/Swift-SRGAN/blob/master/swift-srgan/models.py
import torch
from torch import nn
class SeperableConv2d(nn.Module):
def __init__(
self, in_channels, out_channels, kernel_size, stride=1, padding=1, bias=True
):
super(SeperableConv2d, self).__init__()
self.depthwise = nn.Conv2d(
in_channels,
in_channels,
kernel_size=kernel_size,
stride=stride,
groups=in_channels,
bias=bias,
padding=padding,
)
self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=bias)
def forward(self, x):
return self.pointwise(self.depthwise(x))
class ConvBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
use_act=True,
use_bn=True,
discriminator=False,
**kwargs,
):
super(ConvBlock, self).__init__()
self.use_act = use_act
self.cnn = SeperableConv2d(in_channels, out_channels, **kwargs, bias=not use_bn)
self.bn = nn.BatchNorm2d(out_channels) if use_bn else nn.Identity()
self.act = (
nn.LeakyReLU(0.2, inplace=True)
if discriminator
else nn.PReLU(num_parameters=out_channels)
)
def forward(self, x):
return self.act(self.bn(self.cnn(x))) if self.use_act else self.bn(self.cnn(x))
class UpsampleBlock(nn.Module):
def __init__(self, in_channels, scale_factor):
super(UpsampleBlock, self).__init__()
self.conv = SeperableConv2d(
in_channels,
in_channels * scale_factor**2,
kernel_size=3,
stride=1,
padding=1,
)
self.ps = nn.PixelShuffle(
scale_factor
) # (in_channels * 4, H, W) -> (in_channels, H*2, W*2)
self.act = nn.PReLU(num_parameters=in_channels)
def forward(self, x):
return self.act(self.ps(self.conv(x)))
class ResidualBlock(nn.Module):
def __init__(self, in_channels):
super(ResidualBlock, self).__init__()
self.block1 = ConvBlock(
in_channels, in_channels, kernel_size=3, stride=1, padding=1
)
self.block2 = ConvBlock(
in_channels, in_channels, kernel_size=3, stride=1, padding=1, use_act=False
)
def forward(self, x):
out = self.block1(x)
out = self.block2(out)
return out + x
class Generator(nn.Module):
"""Swift-SRGAN Generator
Args:
in_channels (int): number of input image channels.
num_channels (int): number of hidden channels.
num_blocks (int): number of residual blocks.
upscale_factor (int): factor to upscale the image [2x, 4x, 8x].
Returns:
torch.Tensor: super resolution image
"""
def __init__(
self,
state_dict,
):
super(Generator, self).__init__()
self.model_arch = "Swift-SRGAN"
self.sub_type = "SR"
self.state = state_dict
if "model" in self.state:
self.state = self.state["model"]
self.in_nc: int = self.state["initial.cnn.depthwise.weight"].shape[0]
self.out_nc: int = self.state["final_conv.pointwise.weight"].shape[0]
self.num_filters: int = self.state["initial.cnn.pointwise.weight"].shape[0]
self.num_blocks = len(
set([x.split(".")[1] for x in self.state.keys() if "residual" in x])
)
self.scale: int = 2 ** len(
set([x.split(".")[1] for x in self.state.keys() if "upsampler" in x])
)
in_channels = self.in_nc
num_channels = self.num_filters
num_blocks = self.num_blocks
upscale_factor = self.scale
self.supports_fp16 = True
self.supports_bfp16 = True
self.min_size_restriction = None
self.initial = ConvBlock(
in_channels, num_channels, kernel_size=9, stride=1, padding=4, use_bn=False
)
self.residual = nn.Sequential(
*[ResidualBlock(num_channels) for _ in range(num_blocks)]
)
self.convblock = ConvBlock(
num_channels,
num_channels,
kernel_size=3,
stride=1,
padding=1,
use_act=False,
)
self.upsampler = nn.Sequential(
*[
UpsampleBlock(num_channels, scale_factor=2)
for _ in range(upscale_factor // 2)
]
)
self.final_conv = SeperableConv2d(
num_channels, in_channels, kernel_size=9, stride=1, padding=4
)
self.load_state_dict(self.state, strict=False)
def forward(self, x):
initial = self.initial(x)
x = self.residual(initial)
x = self.convblock(x) + initial
x = self.upsampler(x)
return (torch.tanh(self.final_conv(x)) + 1) / 2

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,513 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import annotations
from collections import OrderedDict
from typing import Literal
import torch
import torch.nn as nn
####################
# Basic blocks
####################
def act(act_type: str, inplace=True, neg_slope=0.2, n_prelu=1):
# helper selecting activation
# neg_slope: for leakyrelu and init of prelu
# n_prelu: for p_relu num_parameters
act_type = act_type.lower()
if act_type == "relu":
layer = nn.ReLU(inplace)
elif act_type == "leakyrelu":
layer = nn.LeakyReLU(neg_slope, inplace)
elif act_type == "prelu":
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
else:
raise NotImplementedError(
"activation layer [{:s}] is not found".format(act_type)
)
return layer
def norm(norm_type: str, nc: int):
# helper selecting normalization layer
norm_type = norm_type.lower()
if norm_type == "batch":
layer = nn.BatchNorm2d(nc, affine=True)
elif norm_type == "instance":
layer = nn.InstanceNorm2d(nc, affine=False)
else:
raise NotImplementedError(
"normalization layer [{:s}] is not found".format(norm_type)
)
return layer
def pad(pad_type: str, padding):
# helper selecting padding layer
# if padding is 'zero', do by conv layers
pad_type = pad_type.lower()
if padding == 0:
return None
if pad_type == "reflect":
layer = nn.ReflectionPad2d(padding)
elif pad_type == "replicate":
layer = nn.ReplicationPad2d(padding)
else:
raise NotImplementedError(
"padding layer [{:s}] is not implemented".format(pad_type)
)
return layer
def get_valid_padding(kernel_size, dilation):
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
padding = (kernel_size - 1) // 2
return padding
class ConcatBlock(nn.Module):
# Concat the output of a submodule to its input
def __init__(self, submodule):
super(ConcatBlock, self).__init__()
self.sub = submodule
def forward(self, x):
output = torch.cat((x, self.sub(x)), dim=1)
return output
def __repr__(self):
tmpstr = "Identity .. \n|"
modstr = self.sub.__repr__().replace("\n", "\n|")
tmpstr = tmpstr + modstr
return tmpstr
class ShortcutBlock(nn.Module):
# Elementwise sum the output of a submodule to its input
def __init__(self, submodule):
super(ShortcutBlock, self).__init__()
self.sub = submodule
def forward(self, x):
output = x + self.sub(x)
return output
def __repr__(self):
tmpstr = "Identity + \n|"
modstr = self.sub.__repr__().replace("\n", "\n|")
tmpstr = tmpstr + modstr
return tmpstr
class ShortcutBlockSPSR(nn.Module):
# Elementwise sum the output of a submodule to its input
def __init__(self, submodule):
super(ShortcutBlockSPSR, self).__init__()
self.sub = submodule
def forward(self, x):
return x, self.sub
def __repr__(self):
tmpstr = "Identity + \n|"
modstr = self.sub.__repr__().replace("\n", "\n|")
tmpstr = tmpstr + modstr
return tmpstr
def sequential(*args):
# Flatten Sequential. It unwraps nn.Sequential.
if len(args) == 1:
if isinstance(args[0], OrderedDict):
raise NotImplementedError("sequential does not support OrderedDict input.")
return args[0] # No sequential is needed.
modules = []
for module in args:
if isinstance(module, nn.Sequential):
for submodule in module.children():
modules.append(submodule)
elif isinstance(module, nn.Module):
modules.append(module)
return nn.Sequential(*modules)
ConvMode = Literal["CNA", "NAC", "CNAC"]
def conv_block(
in_nc: int,
out_nc: int,
kernel_size,
stride=1,
dilation=1,
groups=1,
bias=True,
pad_type="zero",
norm_type: str | None = None,
act_type: str | None = "relu",
mode: ConvMode = "CNA",
):
"""
Conv layer with padding, normalization, activation
mode: CNA --> Conv -> Norm -> Act
NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
"""
assert mode in ("CNA", "NAC", "CNAC"), "Wrong conv mode [{:s}]".format(mode)
padding = get_valid_padding(kernel_size, dilation)
p = pad(pad_type, padding) if pad_type and pad_type != "zero" else None
padding = padding if pad_type == "zero" else 0
c = nn.Conv2d(
in_nc,
out_nc,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
groups=groups,
)
a = act(act_type) if act_type else None
if mode in ("CNA", "CNAC"):
n = norm(norm_type, out_nc) if norm_type else None
return sequential(p, c, n, a)
elif mode == "NAC":
if norm_type is None and act_type is not None:
a = act(act_type, inplace=False)
# Important!
# input----ReLU(inplace)----Conv--+----output
# |________________________|
# inplace ReLU will modify the input, therefore wrong output
n = norm(norm_type, in_nc) if norm_type else None
return sequential(n, a, p, c)
else:
assert False, f"Invalid conv mode {mode}"
####################
# Useful blocks
####################
class ResNetBlock(nn.Module):
"""
ResNet Block, 3-3 style
with extra residual scaling used in EDSR
(Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17)
"""
def __init__(
self,
in_nc,
mid_nc,
out_nc,
kernel_size=3,
stride=1,
dilation=1,
groups=1,
bias=True,
pad_type="zero",
norm_type=None,
act_type="relu",
mode: ConvMode = "CNA",
res_scale=1,
):
super(ResNetBlock, self).__init__()
conv0 = conv_block(
in_nc,
mid_nc,
kernel_size,
stride,
dilation,
groups,
bias,
pad_type,
norm_type,
act_type,
mode,
)
if mode == "CNA":
act_type = None
if mode == "CNAC": # Residual path: |-CNAC-|
act_type = None
norm_type = None
conv1 = conv_block(
mid_nc,
out_nc,
kernel_size,
stride,
dilation,
groups,
bias,
pad_type,
norm_type,
act_type,
mode,
)
# if in_nc != out_nc:
# self.project = conv_block(in_nc, out_nc, 1, stride, dilation, 1, bias, pad_type, \
# None, None)
# print('Need a projecter in ResNetBlock.')
# else:
# self.project = lambda x:x
self.res = sequential(conv0, conv1)
self.res_scale = res_scale
def forward(self, x):
res = self.res(x).mul(self.res_scale)
return x + res
class RRDB(nn.Module):
"""
Residual in Residual Dense Block
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
"""
def __init__(
self,
nf,
kernel_size=3,
gc=32,
stride=1,
bias: bool = True,
pad_type="zero",
norm_type=None,
act_type="leakyrelu",
mode: ConvMode = "CNA",
_convtype="Conv2D",
_spectral_norm=False,
plus=False,
):
super(RRDB, self).__init__()
self.RDB1 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
plus=plus,
)
self.RDB2 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
plus=plus,
)
self.RDB3 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
plus=plus,
)
def forward(self, x):
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
return out * 0.2 + x
class ResidualDenseBlock_5C(nn.Module):
"""
Residual Dense Block
style: 5 convs
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
Modified options that can be used:
- "Partial Convolution based Padding" arXiv:1811.11718
- "Spectral normalization" arXiv:1802.05957
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
{Rakotonirina} and A. {Rasoanaivo}
Args:
nf (int): Channel number of intermediate features (num_feat).
gc (int): Channels for each growth (num_grow_ch: growth channel,
i.e. intermediate channels).
convtype (str): the type of convolution to use. Default: 'Conv2D'
gaussian_noise (bool): enable the ESRGAN+ gaussian noise (no new
trainable parameters)
plus (bool): enable the additional residual paths from ESRGAN+
(adds trainable parameters)
"""
def __init__(
self,
nf=64,
kernel_size=3,
gc=32,
stride=1,
bias: bool = True,
pad_type="zero",
norm_type=None,
act_type="leakyrelu",
mode: ConvMode = "CNA",
plus=False,
):
super(ResidualDenseBlock_5C, self).__init__()
## +
self.conv1x1 = conv1x1(nf, gc) if plus else None
## +
self.conv1 = conv_block(
nf,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
)
self.conv2 = conv_block(
nf + gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
)
self.conv3 = conv_block(
nf + 2 * gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
)
self.conv4 = conv_block(
nf + 3 * gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
)
if mode == "CNA":
last_act = None
else:
last_act = act_type
self.conv5 = conv_block(
nf + 4 * gc,
nf,
3,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=last_act,
mode=mode,
)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(torch.cat((x, x1), 1))
if self.conv1x1:
# pylint: disable=not-callable
x2 = x2 + self.conv1x1(x) # +
x3 = self.conv3(torch.cat((x, x1, x2), 1))
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
if self.conv1x1:
x4 = x4 + x2 # +
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
####################
# Upsampler
####################
def pixelshuffle_block(
in_nc: int,
out_nc: int,
upscale_factor=2,
kernel_size=3,
stride=1,
bias=True,
pad_type="zero",
norm_type: str | None = None,
act_type="relu",
):
"""
Pixel shuffle layer
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
Neural Network, CVPR17)
"""
conv = conv_block(
in_nc,
out_nc * (upscale_factor**2),
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=None,
act_type=None,
)
pixel_shuffle = nn.PixelShuffle(upscale_factor)
n = norm(norm_type, out_nc) if norm_type else None
a = act(act_type) if act_type else None
return sequential(conv, pixel_shuffle, n, a)
def upconv_block(
in_nc: int,
out_nc: int,
upscale_factor=2,
kernel_size=3,
stride=1,
bias=True,
pad_type="zero",
norm_type: str | None = None,
act_type="relu",
mode="nearest",
):
# Up conv
# described in https://distill.pub/2016/deconv-checkerboard/
upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode)
conv = conv_block(
in_nc,
out_nc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
)
return sequential(upsample, conv)

View File

@ -0,0 +1,351 @@
Tencent is pleased to support the open source community by making GFPGAN available.
Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
GFPGAN is licensed under the Apache License Version 2.0 except for the third-party components listed below.
Terms of the Apache License Version 2.0:
---------------------------------------------
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.
“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.
“Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, “control” means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.
“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License.
“Source” form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.
“Object” form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
“Work” shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).
“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.
“Contribution” shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”
“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
You must give any other recipients of the Work or Derivative Works a copy of this License; and
You must cause any modified files to carry prominent notices stating that You changed the files; and
You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and
If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.
You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
Other dependencies and licenses:
Open Source Software licensed under the Apache 2.0 license and Other Licenses of the Third-Party Components therein:
---------------------------------------------
1. basicsr
Copyright 2018-2020 BasicSR Authors
This BasicSR project is released under the Apache 2.0 license.
A copy of Apache 2.0 is included in this file.
StyleGAN2
The codes are modified from the repository stylegan2-pytorch. Many thanks to the author - Kim Seonghyeon 😊 for translating from the official TensorFlow codes to PyTorch ones. Here is the license of stylegan2-pytorch.
The official repository is https://github.com/NVlabs/stylegan2, and here is the NVIDIA license.
DFDNet
The codes are largely modified from the repository DFDNet. Their license is Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Terms of the Nvidia License:
---------------------------------------------
1. Definitions
"Licensor" means any person or entity that distributes its Work.
"Software" means the original work of authorship made available under
this License.
"Work" means the Software and any additions to or derivative works of
the Software that are made available under this License.
"Nvidia Processors" means any central processing unit (CPU), graphics
processing unit (GPU), field-programmable gate array (FPGA),
application-specific integrated circuit (ASIC) or any combination
thereof designed, made, sold, or provided by Nvidia or its affiliates.
The terms "reproduce," "reproduction," "derivative works," and
"distribution" have the meaning as provided under U.S. copyright law;
provided, however, that for the purposes of this License, derivative
works shall not include works that remain separable from, or merely
link (or bind by name) to the interfaces of, the Work.
Works, including the Software, are "made available" under this License
by including in or with the Work either (a) a copyright notice
referencing the applicability of this License to the Work, or (b) a
copy of this License.
2. License Grants
2.1 Copyright Grant. Subject to the terms and conditions of this
License, each Licensor grants to you a perpetual, worldwide,
non-exclusive, royalty-free, copyright license to reproduce,
prepare derivative works of, publicly display, publicly perform,
sublicense and distribute its Work and any resulting derivative
works in any form.
3. Limitations
3.1 Redistribution. You may reproduce or distribute the Work only
if (a) you do so under this License, (b) you include a complete
copy of this License with your distribution, and (c) you retain
without modification any copyright, patent, trademark, or
attribution notices that are present in the Work.
3.2 Derivative Works. You may specify that additional or different
terms apply to the use, reproduction, and distribution of your
derivative works of the Work ("Your Terms") only if (a) Your Terms
provide that the use limitation in Section 3.3 applies to your
derivative works, and (b) you identify the specific derivative
works that are subject to Your Terms. Notwithstanding Your Terms,
this License (including the redistribution requirements in Section
3.1) will continue to apply to the Work itself.
3.3 Use Limitation. The Work and any derivative works thereof only
may be used or intended for use non-commercially. The Work or
derivative works thereof may be used or intended for use by Nvidia
or its affiliates commercially or non-commercially. As used herein,
"non-commercially" means for research or evaluation purposes only.
3.4 Patent Claims. If you bring or threaten to bring a patent claim
against any Licensor (including any claim, cross-claim or
counterclaim in a lawsuit) to enforce any patents that you allege
are infringed by any Work, then your rights under this License from
such Licensor (including the grants in Sections 2.1 and 2.2) will
terminate immediately.
3.5 Trademarks. This License does not grant any rights to use any
Licensor's or its affiliates' names, logos, or trademarks, except
as necessary to reproduce the notices described in this License.
3.6 Termination. If you violate any term of this License, then your
rights under this License (including the grants in Sections 2.1 and
2.2) will terminate immediately.
4. Disclaimer of Warranty.
THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
THIS LICENSE.
5. Limitation of Liability.
EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
(INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.
MIT License
Copyright (c) 2019 Kim Seonghyeon
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Open Source Software licensed under the BSD 3-Clause license:
---------------------------------------------
1. torchvision
Copyright (c) Soumith Chintala 2016,
All rights reserved.
2. torch
Copyright (c) 2016- Facebook, Inc (Adam Paszke)
Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
Copyright (c) 2011-2013 NYU (Clement Farabet)
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
Terms of the BSD 3-Clause License:
---------------------------------------------
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Open Source Software licensed under the BSD 3-Clause License and Other Licenses of the Third-Party Components therein:
---------------------------------------------
1. numpy
Copyright (c) 2005-2020, NumPy Developers.
All rights reserved.
A copy of BSD 3-Clause License is included in this file.
The NumPy repository and source distributions bundle several libraries that are
compatibly licensed. We list these here.
Name: Numpydoc
Files: doc/sphinxext/numpydoc/*
License: BSD-2-Clause
For details, see doc/sphinxext/LICENSE.txt
Name: scipy-sphinx-theme
Files: doc/scipy-sphinx-theme/*
License: BSD-3-Clause AND PSF-2.0 AND Apache-2.0
For details, see doc/scipy-sphinx-theme/LICENSE.txt
Name: lapack-lite
Files: numpy/linalg/lapack_lite/*
License: BSD-3-Clause
For details, see numpy/linalg/lapack_lite/LICENSE.txt
Name: tempita
Files: tools/npy_tempita/*
License: MIT
For details, see tools/npy_tempita/license.txt
Name: dragon4
Files: numpy/core/src/multiarray/dragon4.c
License: MIT
For license text, see numpy/core/src/multiarray/dragon4.c
Open Source Software licensed under the MIT license:
---------------------------------------------
1. facexlib
Copyright (c) 2020 Xintao Wang
2. opencv-python
Copyright (c) Olli-Pekka Heinisuo
Please note that only files in cv2 package are used.
Terms of the MIT License:
---------------------------------------------
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Open Source Software licensed under the MIT license and Other Licenses of the Third-Party Components therein:
---------------------------------------------
1. tqdm
Copyright (c) 2013 noamraph
`tqdm` is a product of collaborative work.
Unless otherwise stated, all authors (see commit logs) retain copyright
for their respective work, and release the work under the MIT licence
(text below).
Exceptions or notable authors are listed below
in reverse chronological order:
* files: *
MPLv2.0 2015-2020 (c) Casper da Costa-Luis
[casperdcl](https://github.com/casperdcl).
* files: tqdm/_tqdm.py
MIT 2016 (c) [PR #96] on behalf of Google Inc.
* files: tqdm/_tqdm.py setup.py README.rst MANIFEST.in .gitignore
MIT 2013 (c) Noam Yorav-Raphael, original author.
[PR #96]: https://github.com/tqdm/tqdm/pull/96
Mozilla Public Licence (MPL) v. 2.0 - Exhibit A
-----------------------------------------------
This Source Code Form is subject to the terms of the
Mozilla Public License, v. 2.0.
If a copy of the MPL was not distributed with this file,
You can obtain one at https://mozilla.org/MPL/2.0/.
MIT License (MIT)
-----------------
Copyright (c) 2013 noamraph
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -0,0 +1,351 @@
Tencent is pleased to support the open source community by making GFPGAN available.
Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
GFPGAN is licensed under the Apache License Version 2.0 except for the third-party components listed below.
Terms of the Apache License Version 2.0:
---------------------------------------------
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.
“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.
“Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, “control” means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.
“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License.
“Source” form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.
“Object” form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
“Work” shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).
“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.
“Contribution” shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”
“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
You must give any other recipients of the Work or Derivative Works a copy of this License; and
You must cause any modified files to carry prominent notices stating that You changed the files; and
You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and
If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.
You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
Other dependencies and licenses:
Open Source Software licensed under the Apache 2.0 license and Other Licenses of the Third-Party Components therein:
---------------------------------------------
1. basicsr
Copyright 2018-2020 BasicSR Authors
This BasicSR project is released under the Apache 2.0 license.
A copy of Apache 2.0 is included in this file.
StyleGAN2
The codes are modified from the repository stylegan2-pytorch. Many thanks to the author - Kim Seonghyeon 😊 for translating from the official TensorFlow codes to PyTorch ones. Here is the license of stylegan2-pytorch.
The official repository is https://github.com/NVlabs/stylegan2, and here is the NVIDIA license.
DFDNet
The codes are largely modified from the repository DFDNet. Their license is Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Terms of the Nvidia License:
---------------------------------------------
1. Definitions
"Licensor" means any person or entity that distributes its Work.
"Software" means the original work of authorship made available under
this License.
"Work" means the Software and any additions to or derivative works of
the Software that are made available under this License.
"Nvidia Processors" means any central processing unit (CPU), graphics
processing unit (GPU), field-programmable gate array (FPGA),
application-specific integrated circuit (ASIC) or any combination
thereof designed, made, sold, or provided by Nvidia or its affiliates.
The terms "reproduce," "reproduction," "derivative works," and
"distribution" have the meaning as provided under U.S. copyright law;
provided, however, that for the purposes of this License, derivative
works shall not include works that remain separable from, or merely
link (or bind by name) to the interfaces of, the Work.
Works, including the Software, are "made available" under this License
by including in or with the Work either (a) a copyright notice
referencing the applicability of this License to the Work, or (b) a
copy of this License.
2. License Grants
2.1 Copyright Grant. Subject to the terms and conditions of this
License, each Licensor grants to you a perpetual, worldwide,
non-exclusive, royalty-free, copyright license to reproduce,
prepare derivative works of, publicly display, publicly perform,
sublicense and distribute its Work and any resulting derivative
works in any form.
3. Limitations
3.1 Redistribution. You may reproduce or distribute the Work only
if (a) you do so under this License, (b) you include a complete
copy of this License with your distribution, and (c) you retain
without modification any copyright, patent, trademark, or
attribution notices that are present in the Work.
3.2 Derivative Works. You may specify that additional or different
terms apply to the use, reproduction, and distribution of your
derivative works of the Work ("Your Terms") only if (a) Your Terms
provide that the use limitation in Section 3.3 applies to your
derivative works, and (b) you identify the specific derivative
works that are subject to Your Terms. Notwithstanding Your Terms,
this License (including the redistribution requirements in Section
3.1) will continue to apply to the Work itself.
3.3 Use Limitation. The Work and any derivative works thereof only
may be used or intended for use non-commercially. The Work or
derivative works thereof may be used or intended for use by Nvidia
or its affiliates commercially or non-commercially. As used herein,
"non-commercially" means for research or evaluation purposes only.
3.4 Patent Claims. If you bring or threaten to bring a patent claim
against any Licensor (including any claim, cross-claim or
counterclaim in a lawsuit) to enforce any patents that you allege
are infringed by any Work, then your rights under this License from
such Licensor (including the grants in Sections 2.1 and 2.2) will
terminate immediately.
3.5 Trademarks. This License does not grant any rights to use any
Licensor's or its affiliates' names, logos, or trademarks, except
as necessary to reproduce the notices described in this License.
3.6 Termination. If you violate any term of this License, then your
rights under this License (including the grants in Sections 2.1 and
2.2) will terminate immediately.
4. Disclaimer of Warranty.
THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
THIS LICENSE.
5. Limitation of Liability.
EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
(INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.
MIT License
Copyright (c) 2019 Kim Seonghyeon
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Open Source Software licensed under the BSD 3-Clause license:
---------------------------------------------
1. torchvision
Copyright (c) Soumith Chintala 2016,
All rights reserved.
2. torch
Copyright (c) 2016- Facebook, Inc (Adam Paszke)
Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
Copyright (c) 2011-2013 NYU (Clement Farabet)
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
Terms of the BSD 3-Clause License:
---------------------------------------------
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Open Source Software licensed under the BSD 3-Clause License and Other Licenses of the Third-Party Components therein:
---------------------------------------------
1. numpy
Copyright (c) 2005-2020, NumPy Developers.
All rights reserved.
A copy of BSD 3-Clause License is included in this file.
The NumPy repository and source distributions bundle several libraries that are
compatibly licensed. We list these here.
Name: Numpydoc
Files: doc/sphinxext/numpydoc/*
License: BSD-2-Clause
For details, see doc/sphinxext/LICENSE.txt
Name: scipy-sphinx-theme
Files: doc/scipy-sphinx-theme/*
License: BSD-3-Clause AND PSF-2.0 AND Apache-2.0
For details, see doc/scipy-sphinx-theme/LICENSE.txt
Name: lapack-lite
Files: numpy/linalg/lapack_lite/*
License: BSD-3-Clause
For details, see numpy/linalg/lapack_lite/LICENSE.txt
Name: tempita
Files: tools/npy_tempita/*
License: MIT
For details, see tools/npy_tempita/license.txt
Name: dragon4
Files: numpy/core/src/multiarray/dragon4.c
License: MIT
For license text, see numpy/core/src/multiarray/dragon4.c
Open Source Software licensed under the MIT license:
---------------------------------------------
1. facexlib
Copyright (c) 2020 Xintao Wang
2. opencv-python
Copyright (c) Olli-Pekka Heinisuo
Please note that only files in cv2 package are used.
Terms of the MIT License:
---------------------------------------------
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Open Source Software licensed under the MIT license and Other Licenses of the Third-Party Components therein:
---------------------------------------------
1. tqdm
Copyright (c) 2013 noamraph
`tqdm` is a product of collaborative work.
Unless otherwise stated, all authors (see commit logs) retain copyright
for their respective work, and release the work under the MIT licence
(text below).
Exceptions or notable authors are listed below
in reverse chronological order:
* files: *
MPLv2.0 2015-2020 (c) Casper da Costa-Luis
[casperdcl](https://github.com/casperdcl).
* files: tqdm/_tqdm.py
MIT 2016 (c) [PR #96] on behalf of Google Inc.
* files: tqdm/_tqdm.py setup.py README.rst MANIFEST.in .gitignore
MIT 2013 (c) Noam Yorav-Raphael, original author.
[PR #96]: https://github.com/tqdm/tqdm/pull/96
Mozilla Public Licence (MPL) v. 2.0 - Exhibit A
-----------------------------------------------
This Source Code Form is subject to the terms of the
Mozilla Public License, v. 2.0.
If a copy of the MPL was not distributed with this file,
You can obtain one at https://mozilla.org/MPL/2.0/.
MIT License (MIT)
-----------------
Copyright (c) 2013 noamraph
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -0,0 +1,35 @@
S-Lab License 1.0
Copyright 2022 S-Lab
Redistribution and use for non-commercial purpose in source and
binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
In the event that redistribution and/or use for commercial purpose in
source or binary forms, with or without modification is required,
please contact the contributor(s) of the work.

View File

@ -0,0 +1,265 @@
import torch.nn as nn
def conv3x3(inplanes, outplanes, stride=1):
"""A simple wrapper for 3x3 convolution with padding.
Args:
inplanes (int): Channel number of inputs.
outplanes (int): Channel number of outputs.
stride (int): Stride in convolution. Default: 1.
"""
return nn.Conv2d(
inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False
)
class BasicBlock(nn.Module):
"""Basic residual block used in the ResNetArcFace architecture.
Args:
inplanes (int): Channel number of inputs.
planes (int): Channel number of outputs.
stride (int): Stride in convolution. Default: 1.
downsample (nn.Module): The downsample module. Default: None.
"""
expansion = 1 # output channel expansion ratio
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class IRBlock(nn.Module):
"""Improved residual block (IR Block) used in the ResNetArcFace architecture.
Args:
inplanes (int): Channel number of inputs.
planes (int): Channel number of outputs.
stride (int): Stride in convolution. Default: 1.
downsample (nn.Module): The downsample module. Default: None.
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
"""
expansion = 1 # output channel expansion ratio
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
super(IRBlock, self).__init__()
self.bn0 = nn.BatchNorm2d(inplanes)
self.conv1 = conv3x3(inplanes, inplanes)
self.bn1 = nn.BatchNorm2d(inplanes)
self.prelu = nn.PReLU()
self.conv2 = conv3x3(inplanes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
self.use_se = use_se
if self.use_se:
self.se = SEBlock(planes)
def forward(self, x):
residual = x
out = self.bn0(x)
out = self.conv1(out)
out = self.bn1(out)
out = self.prelu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.use_se:
out = self.se(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.prelu(out)
return out
class Bottleneck(nn.Module):
"""Bottleneck block used in the ResNetArcFace architecture.
Args:
inplanes (int): Channel number of inputs.
planes (int): Channel number of outputs.
stride (int): Stride in convolution. Default: 1.
downsample (nn.Module): The downsample module. Default: None.
"""
expansion = 4 # output channel expansion ratio
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False
)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(
planes, planes * self.expansion, kernel_size=1, bias=False
)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class SEBlock(nn.Module):
"""The squeeze-and-excitation block (SEBlock) used in the IRBlock.
Args:
channel (int): Channel number of inputs.
reduction (int): Channel reduction ration. Default: 16.
"""
def __init__(self, channel, reduction=16):
super(SEBlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(
1
) # pool to 1x1 without spatial information
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction),
nn.PReLU(),
nn.Linear(channel // reduction, channel),
nn.Sigmoid(),
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
class ResNetArcFace(nn.Module):
"""ArcFace with ResNet architectures.
Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
Args:
block (str): Block used in the ArcFace architecture.
layers (tuple(int)): Block numbers in each layer.
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
"""
def __init__(self, block, layers, use_se=True):
if block == "IRBlock":
block = IRBlock
self.inplanes = 64
self.use_se = use_se
super(ResNetArcFace, self).__init__()
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.prelu = nn.PReLU()
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.bn4 = nn.BatchNorm2d(512)
self.dropout = nn.Dropout()
self.fc5 = nn.Linear(512 * 8 * 8, 512)
self.bn5 = nn.BatchNorm1d(512)
# initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, num_blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False,
),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(
block(self.inplanes, planes, stride, downsample, use_se=self.use_se)
)
self.inplanes = planes
for _ in range(1, num_blocks):
layers.append(block(self.inplanes, planes, use_se=self.use_se))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.prelu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.bn4(x)
x = self.dropout(x)
x = x.view(x.size(0), -1)
x = self.fc5(x)
x = self.bn5(x)
return x

View File

@ -0,0 +1,790 @@
"""
Modified from https://github.com/sczhou/CodeFormer
VQGAN code, adapted from the original created by the Unleashing Transformers authors:
https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py
This verison of the arch specifically was gathered from an old version of GFPGAN. If this is a problem, please contact me.
"""
import math
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
import logging as logger
from torch import Tensor
class VectorQuantizer(nn.Module):
def __init__(self, codebook_size, emb_dim, beta):
super(VectorQuantizer, self).__init__()
self.codebook_size = codebook_size # number of embeddings
self.emb_dim = emb_dim # dimension of embedding
self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
self.embedding.weight.data.uniform_(
-1.0 / self.codebook_size, 1.0 / self.codebook_size
)
def forward(self, z):
# reshape z -> (batch, height, width, channel) and flatten
z = z.permute(0, 2, 3, 1).contiguous()
z_flattened = z.view(-1, self.emb_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = (
(z_flattened**2).sum(dim=1, keepdim=True)
+ (self.embedding.weight**2).sum(1)
- 2 * torch.matmul(z_flattened, self.embedding.weight.t())
)
mean_distance = torch.mean(d)
# find closest encodings
# min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
min_encoding_scores, min_encoding_indices = torch.topk(
d, 1, dim=1, largest=False
)
# [0-1], higher score, higher confidence
min_encoding_scores = torch.exp(-min_encoding_scores / 10)
min_encodings = torch.zeros(
min_encoding_indices.shape[0], self.codebook_size
).to(z)
min_encodings.scatter_(1, min_encoding_indices, 1)
# get quantized latent vectors
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
# compute loss for embedding
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean(
(z_q - z.detach()) ** 2
)
# preserve gradients
z_q = z + (z_q - z).detach()
# perplexity
e_mean = torch.mean(min_encodings, dim=0)
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return (
z_q,
loss,
{
"perplexity": perplexity,
"min_encodings": min_encodings,
"min_encoding_indices": min_encoding_indices,
"min_encoding_scores": min_encoding_scores,
"mean_distance": mean_distance,
},
)
def get_codebook_feat(self, indices, shape):
# input indices: batch*token_num -> (batch*token_num)*1
# shape: batch, height, width, channel
indices = indices.view(-1, 1)
min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
min_encodings.scatter_(1, indices, 1)
# get quantized latent vectors
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
if shape is not None: # reshape back to match original input shape
z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()
return z_q
class GumbelQuantizer(nn.Module):
def __init__(
self,
codebook_size,
emb_dim,
num_hiddens,
straight_through=False,
kl_weight=5e-4,
temp_init=1.0,
):
super().__init__()
self.codebook_size = codebook_size # number of embeddings
self.emb_dim = emb_dim # dimension of embedding
self.straight_through = straight_through
self.temperature = temp_init
self.kl_weight = kl_weight
self.proj = nn.Conv2d(
num_hiddens, codebook_size, 1
) # projects last encoder layer to quantized logits
self.embed = nn.Embedding(codebook_size, emb_dim)
def forward(self, z):
hard = self.straight_through if self.training else True
logits = self.proj(z)
soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard)
z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)
# + kl divergence to the prior loss
qy = F.softmax(logits, dim=1)
diff = (
self.kl_weight
* torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean()
)
min_encoding_indices = soft_one_hot.argmax(dim=1)
return z_q, diff, {"min_encoding_indices": min_encoding_indices}
class Downsample(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=2, padding=0
)
def forward(self, x):
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
return x
class Upsample(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=1, padding=1
)
def forward(self, x):
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
x = self.conv(x)
return x
class AttnBlock(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = normalize(in_channels)
self.q = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.k = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.v = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.proj_out = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h * w)
q = q.permute(0, 2, 1)
k = k.reshape(b, c, h * w)
w_ = torch.bmm(q, k)
w_ = w_ * (int(c) ** (-0.5))
w_ = F.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h * w)
w_ = w_.permute(0, 2, 1)
h_ = torch.bmm(v, w_)
h_ = h_.reshape(b, c, h, w)
h_ = self.proj_out(h_)
return x + h_
class Encoder(nn.Module):
def __init__(
self,
in_channels,
nf,
out_channels,
ch_mult,
num_res_blocks,
resolution,
attn_resolutions,
):
super().__init__()
self.nf = nf
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.attn_resolutions = attn_resolutions
curr_res = self.resolution
in_ch_mult = (1,) + tuple(ch_mult)
blocks = []
# initial convultion
blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1))
# residual and downsampling blocks, with attention on smaller res (16x16)
for i in range(self.num_resolutions):
block_in_ch = nf * in_ch_mult[i]
block_out_ch = nf * ch_mult[i]
for _ in range(self.num_res_blocks):
blocks.append(ResBlock(block_in_ch, block_out_ch))
block_in_ch = block_out_ch
if curr_res in attn_resolutions:
blocks.append(AttnBlock(block_in_ch))
if i != self.num_resolutions - 1:
blocks.append(Downsample(block_in_ch))
curr_res = curr_res // 2
# non-local attention block
blocks.append(ResBlock(block_in_ch, block_in_ch)) # type: ignore
blocks.append(AttnBlock(block_in_ch)) # type: ignore
blocks.append(ResBlock(block_in_ch, block_in_ch)) # type: ignore
# normalise and convert to latent size
blocks.append(normalize(block_in_ch)) # type: ignore
blocks.append(
nn.Conv2d(block_in_ch, out_channels, kernel_size=3, stride=1, padding=1) # type: ignore
)
self.blocks = nn.ModuleList(blocks)
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
class Generator(nn.Module):
def __init__(self, nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim):
super().__init__()
self.nf = nf
self.ch_mult = ch_mult
self.num_resolutions = len(self.ch_mult)
self.num_res_blocks = res_blocks
self.resolution = img_size
self.attn_resolutions = attn_resolutions
self.in_channels = emb_dim
self.out_channels = 3
block_in_ch = self.nf * self.ch_mult[-1]
curr_res = self.resolution // 2 ** (self.num_resolutions - 1)
blocks = []
# initial conv
blocks.append(
nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1)
)
# non-local attention block
blocks.append(ResBlock(block_in_ch, block_in_ch))
blocks.append(AttnBlock(block_in_ch))
blocks.append(ResBlock(block_in_ch, block_in_ch))
for i in reversed(range(self.num_resolutions)):
block_out_ch = self.nf * self.ch_mult[i]
for _ in range(self.num_res_blocks):
blocks.append(ResBlock(block_in_ch, block_out_ch))
block_in_ch = block_out_ch
if curr_res in self.attn_resolutions:
blocks.append(AttnBlock(block_in_ch))
if i != 0:
blocks.append(Upsample(block_in_ch))
curr_res = curr_res * 2
blocks.append(normalize(block_in_ch))
blocks.append(
nn.Conv2d(
block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1
)
)
self.blocks = nn.ModuleList(blocks)
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
class VQAutoEncoder(nn.Module):
def __init__(
self,
img_size,
nf,
ch_mult,
quantizer="nearest",
res_blocks=2,
attn_resolutions=[16],
codebook_size=1024,
emb_dim=256,
beta=0.25,
gumbel_straight_through=False,
gumbel_kl_weight=1e-8,
model_path=None,
):
super().__init__()
self.in_channels = 3
self.nf = nf
self.n_blocks = res_blocks
self.codebook_size = codebook_size
self.embed_dim = emb_dim
self.ch_mult = ch_mult
self.resolution = img_size
self.attn_resolutions = attn_resolutions
self.quantizer_type = quantizer
self.encoder = Encoder(
self.in_channels,
self.nf,
self.embed_dim,
self.ch_mult,
self.n_blocks,
self.resolution,
self.attn_resolutions,
)
if self.quantizer_type == "nearest":
self.beta = beta # 0.25
self.quantize = VectorQuantizer(
self.codebook_size, self.embed_dim, self.beta
)
elif self.quantizer_type == "gumbel":
self.gumbel_num_hiddens = emb_dim
self.straight_through = gumbel_straight_through
self.kl_weight = gumbel_kl_weight
self.quantize = GumbelQuantizer(
self.codebook_size,
self.embed_dim,
self.gumbel_num_hiddens,
self.straight_through,
self.kl_weight,
)
self.generator = Generator(
nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim
)
if model_path is not None:
chkpt = torch.load(model_path, map_location="cpu")
if "params_ema" in chkpt:
self.load_state_dict(
torch.load(model_path, map_location="cpu")["params_ema"]
)
logger.info(f"vqgan is loaded from: {model_path} [params_ema]")
elif "params" in chkpt:
self.load_state_dict(
torch.load(model_path, map_location="cpu")["params"]
)
logger.info(f"vqgan is loaded from: {model_path} [params]")
else:
raise ValueError("Wrong params!")
def forward(self, x):
x = self.encoder(x)
quant, codebook_loss, quant_stats = self.quantize(x)
x = self.generator(quant)
return x, codebook_loss, quant_stats
def calc_mean_std(feat, eps=1e-5):
"""Calculate mean and std for adaptive_instance_normalization.
Args:
feat (Tensor): 4D tensor.
eps (float): A small value added to the variance to avoid
divide-by-zero. Default: 1e-5.
"""
size = feat.size()
assert len(size) == 4, "The input feature should be 4D tensor."
b, c = size[:2]
feat_var = feat.view(b, c, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(b, c, 1, 1)
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization(content_feat, style_feat):
"""Adaptive instance normalization.
Adjust the reference features to have the similar color and illuminations
as those in the degradate features.
Args:
content_feat (Tensor): The reference feature.
style_feat (Tensor): The degradate features.
"""
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(
size
)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
class PositionEmbeddingSine(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one
used by the Attention is all you need paper, generalized to work on images.
"""
def __init__(
self, num_pos_feats=64, temperature=10000, normalize=False, scale=None
):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, x, mask=None):
if mask is None:
mask = torch.zeros(
(x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool
)
not_mask = ~mask # pylint: disable=invalid-unary-operand-type
y_embed = not_mask.cumsum(1, dtype=torch.float32)
x_embed = not_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack(
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
).flatten(3)
pos_y = torch.stack(
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
class TransformerSALayer(nn.Module):
def __init__(
self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"
):
super().__init__()
self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
# Implementation of Feedforward model - MLP
self.linear1 = nn.Linear(embed_dim, dim_mlp)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_mlp, embed_dim)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward(
self,
tgt,
tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
# self attention
tgt2 = self.norm1(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
tgt2 = self.self_attn(
q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
)[0]
tgt = tgt + self.dropout1(tgt2)
# ffn
tgt2 = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout2(tgt2)
return tgt
def normalize(in_channels):
return torch.nn.GroupNorm(
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
)
@torch.jit.script # type: ignore
def swish(x):
return x * torch.sigmoid(x)
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels=None):
super(ResBlock, self).__init__()
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.norm1 = normalize(in_channels)
self.conv1 = nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1 # type: ignore
)
self.norm2 = normalize(out_channels)
self.conv2 = nn.Conv2d(
out_channels, out_channels, kernel_size=3, stride=1, padding=1 # type: ignore
)
if self.in_channels != self.out_channels:
self.conv_out = nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1, padding=0 # type: ignore
)
def forward(self, x_in):
x = x_in
x = self.norm1(x)
x = swish(x)
x = self.conv1(x)
x = self.norm2(x)
x = swish(x)
x = self.conv2(x)
if self.in_channels != self.out_channels:
x_in = self.conv_out(x_in)
return x + x_in
class Fuse_sft_block(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.encode_enc = ResBlock(2 * in_ch, out_ch)
self.scale = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
)
self.shift = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
)
def forward(self, enc_feat, dec_feat, w=1):
enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
scale = self.scale(enc_feat)
shift = self.shift(enc_feat)
residual = w * (dec_feat * scale + shift)
out = dec_feat + residual
return out
class CodeFormer(VQAutoEncoder):
def __init__(self, state_dict):
dim_embd = 512
n_head = 8
n_layers = 9
codebook_size = 1024
latent_size = 256
connect_list = ["32", "64", "128", "256"]
fix_modules = ["quantize", "generator"]
# This is just a guess as I only have one model to look at
position_emb = state_dict["position_emb"]
dim_embd = position_emb.shape[1]
latent_size = position_emb.shape[0]
try:
n_layers = len(
set([x.split(".")[1] for x in state_dict.keys() if "ft_layers" in x])
)
except:
pass
codebook_size = state_dict["quantize.embedding.weight"].shape[0]
# This is also just another guess
n_head_exp = (
state_dict["ft_layers.0.self_attn.in_proj_weight"].shape[0] // dim_embd
)
n_head = 2**n_head_exp
in_nc = state_dict["encoder.blocks.0.weight"].shape[1]
self.model_arch = "CodeFormer"
self.sub_type = "Face SR"
self.scale = 8
self.in_nc = in_nc
self.out_nc = in_nc
self.state = state_dict
self.supports_fp16 = False
self.supports_bf16 = True
self.min_size_restriction = 16
super(CodeFormer, self).__init__(
512, 64, [1, 2, 2, 4, 4, 8], "nearest", 2, [16], codebook_size
)
if fix_modules is not None:
for module in fix_modules:
for param in getattr(self, module).parameters():
param.requires_grad = False
self.connect_list = connect_list
self.n_layers = n_layers
self.dim_embd = dim_embd
self.dim_mlp = dim_embd * 2
self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd)) # type: ignore
self.feat_emb = nn.Linear(256, self.dim_embd)
# transformer
self.ft_layers = nn.Sequential(
*[
TransformerSALayer(
embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0
)
for _ in range(self.n_layers)
]
)
# logits_predict head
self.idx_pred_layer = nn.Sequential(
nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False)
)
self.channels = {
"16": 512,
"32": 256,
"64": 256,
"128": 128,
"256": 128,
"512": 64,
}
# after second residual block for > 16, before attn layer for ==16
self.fuse_encoder_block = {
"512": 2,
"256": 5,
"128": 8,
"64": 11,
"32": 14,
"16": 18,
}
# after first residual block for > 16, before attn layer for ==16
self.fuse_generator_block = {
"16": 6,
"32": 9,
"64": 12,
"128": 15,
"256": 18,
"512": 21,
}
# fuse_convs_dict
self.fuse_convs_dict = nn.ModuleDict()
for f_size in self.connect_list:
in_ch = self.channels[f_size]
self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)
self.load_state_dict(state_dict)
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, x, weight=0.5, **kwargs):
detach_16 = True
code_only = False
adain = True
# ################### Encoder #####################
enc_feat_dict = {}
out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
for i, block in enumerate(self.encoder.blocks):
x = block(x)
if i in out_list:
enc_feat_dict[str(x.shape[-1])] = x.clone()
lq_feat = x
# ################# Transformer ###################
# quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
pos_emb = self.position_emb.unsqueeze(1).repeat(1, x.shape[0], 1)
# BCHW -> BC(HW) -> (HW)BC
feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2, 0, 1))
query_emb = feat_emb
# Transformer encoder
for layer in self.ft_layers:
query_emb = layer(query_emb, query_pos=pos_emb)
# output logits
logits = self.idx_pred_layer(query_emb) # (hw)bn
logits = logits.permute(1, 0, 2) # (hw)bn -> b(hw)n
if code_only: # for training stage II
# logits doesn't need softmax before cross_entropy loss
return logits, lq_feat
# ################# Quantization ###################
# if self.training:
# quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
# # b(hw)c -> bc(hw) -> bchw
# quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
# ------------
soft_one_hot = F.softmax(logits, dim=2)
_, top_idx = torch.topk(soft_one_hot, 1, dim=2)
quant_feat = self.quantize.get_codebook_feat(
top_idx, shape=[x.shape[0], 16, 16, 256] # type: ignore
)
# preserve gradients
# quant_feat = lq_feat + (quant_feat - lq_feat).detach()
if detach_16:
quant_feat = quant_feat.detach() # for training stage III
if adain:
quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)
# ################## Generator ####################
x = quant_feat
fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]
for i, block in enumerate(self.generator.blocks):
x = block(x)
if i in fuse_list: # fuse after i-th block
f_size = str(x.shape[-1])
if weight > 0:
x = self.fuse_convs_dict[f_size](
enc_feat_dict[f_size].detach(), x, weight
)
out = x
# logits doesn't need softmax before cross_entropy loss
# return out, logits, lq_feat
return out, logits

View File

@ -0,0 +1,81 @@
# pylint: skip-file
# type: ignore
# modify from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_act.py # noqa:E501
import torch
from torch import nn
from torch.autograd import Function
fused_act_ext = None
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused_act_ext.fused_bias_act(
grad_output, empty, out, 3, 1, negative_slope, scale
)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
grad_bias = grad_input.sum(dim).detach()
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
(out,) = ctx.saved_tensors
gradgrad_out = fused_act_ext.fused_bias_act(
gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
)
return gradgrad_out, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
out = fused_act_ext.fused_bias_act(
input, bias, empty, 3, 0, negative_slope, scale
)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
(out,) = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.negative_slope, ctx.scale
)
return grad_input, grad_bias, None, None
class FusedLeakyReLU(nn.Module):
def __init__(self, channel, negative_slope=0.2, scale=2**0.5):
super().__init__()
self.bias = nn.Parameter(torch.zeros(channel))
self.negative_slope = negative_slope
self.scale = scale
def forward(self, input):
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2**0.5):
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)

View File

@ -0,0 +1,389 @@
# pylint: skip-file
# type: ignore
import math
import random
import torch
from torch import nn
from .gfpganv1_arch import ResUpBlock
from .stylegan2_bilinear_arch import (
ConvLayer,
EqualConv2d,
EqualLinear,
ResBlock,
ScaledLeakyReLU,
StyleGAN2GeneratorBilinear,
)
class StyleGAN2GeneratorBilinearSFT(StyleGAN2GeneratorBilinear):
"""StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
It is the bilinear version. It does not use the complicated UpFirDnSmooth function that is not friendly for
deployment. It can be easily converted to the clean version: StyleGAN2GeneratorCSFT.
Args:
out_size (int): The spatial size of outputs.
num_style_feat (int): Channel number of style features. Default: 512.
num_mlp (int): Layer number of MLP style layers. Default: 8.
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
narrow (float): The narrow ratio for channels. Default: 1.
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
"""
def __init__(
self,
out_size,
num_style_feat=512,
num_mlp=8,
channel_multiplier=2,
lr_mlp=0.01,
narrow=1,
sft_half=False,
):
super(StyleGAN2GeneratorBilinearSFT, self).__init__(
out_size,
num_style_feat=num_style_feat,
num_mlp=num_mlp,
channel_multiplier=channel_multiplier,
lr_mlp=lr_mlp,
narrow=narrow,
)
self.sft_half = sft_half
def forward(
self,
styles,
conditions,
input_is_latent=False,
noise=None,
randomize_noise=True,
truncation=1,
truncation_latent=None,
inject_index=None,
return_latents=False,
):
"""Forward function for StyleGAN2GeneratorBilinearSFT.
Args:
styles (list[Tensor]): Sample codes of styles.
conditions (list[Tensor]): SFT conditions to generators.
input_is_latent (bool): Whether input is latent style. Default: False.
noise (Tensor | None): Input noise or None. Default: None.
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
truncation (float): The truncation ratio. Default: 1.
truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
inject_index (int | None): The injection index for mixing noise. Default: None.
return_latents (bool): Whether to return style latents. Default: False.
"""
# style codes -> latents with Style MLP layer
if not input_is_latent:
styles = [self.style_mlp(s) for s in styles]
# noises
if noise is None:
if randomize_noise:
noise = [None] * self.num_layers # for each style conv layer
else: # use the stored noise
noise = [
getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
]
# style truncation
if truncation < 1:
style_truncation = []
for style in styles:
style_truncation.append(
truncation_latent + truncation * (style - truncation_latent)
)
styles = style_truncation
# get style latents with injection
if len(styles) == 1:
inject_index = self.num_latent
if styles[0].ndim < 3:
# repeat latent code for all the layers
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else: # used for encoder with different latent code for each layer
latent = styles[0]
elif len(styles) == 2: # mixing noises
if inject_index is None:
inject_index = random.randint(1, self.num_latent - 1)
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
latent2 = (
styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
)
latent = torch.cat([latent1, latent2], 1)
# main generation
out = self.constant_input(latent.shape[0])
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
skip = self.to_rgb1(out, latent[:, 1])
i = 1
for conv1, conv2, noise1, noise2, to_rgb in zip(
self.style_convs[::2],
self.style_convs[1::2],
noise[1::2],
noise[2::2],
self.to_rgbs,
):
out = conv1(out, latent[:, i], noise=noise1)
# the conditions may have fewer levels
if i < len(conditions):
# SFT part to combine the conditions
if self.sft_half: # only apply SFT to half of the channels
out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
out_sft = out_sft * conditions[i - 1] + conditions[i]
out = torch.cat([out_same, out_sft], dim=1)
else: # apply SFT to all the channels
out = out * conditions[i - 1] + conditions[i]
out = conv2(out, latent[:, i + 1], noise=noise2)
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
i += 2
image = skip
if return_latents:
return image, latent
else:
return image, None
class GFPGANBilinear(nn.Module):
"""The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
It is the bilinear version and it does not use the complicated UpFirDnSmooth function that is not friendly for
deployment. It can be easily converted to the clean version: GFPGANv1Clean.
Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
Args:
out_size (int): The spatial size of outputs.
num_style_feat (int): Channel number of style features. Default: 512.
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
fix_decoder (bool): Whether to fix the decoder. Default: True.
num_mlp (int): Layer number of MLP style layers. Default: 8.
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
input_is_latent (bool): Whether input is latent style. Default: False.
different_w (bool): Whether to use different latent w for different layers. Default: False.
narrow (float): The narrow ratio for channels. Default: 1.
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
"""
def __init__(
self,
out_size,
num_style_feat=512,
channel_multiplier=1,
decoder_load_path=None,
fix_decoder=True,
# for stylegan decoder
num_mlp=8,
lr_mlp=0.01,
input_is_latent=False,
different_w=False,
narrow=1,
sft_half=False,
):
super(GFPGANBilinear, self).__init__()
self.input_is_latent = input_is_latent
self.different_w = different_w
self.num_style_feat = num_style_feat
self.min_size_restriction = 512
unet_narrow = narrow * 0.5 # by default, use a half of input channels
channels = {
"4": int(512 * unet_narrow),
"8": int(512 * unet_narrow),
"16": int(512 * unet_narrow),
"32": int(512 * unet_narrow),
"64": int(256 * channel_multiplier * unet_narrow),
"128": int(128 * channel_multiplier * unet_narrow),
"256": int(64 * channel_multiplier * unet_narrow),
"512": int(32 * channel_multiplier * unet_narrow),
"1024": int(16 * channel_multiplier * unet_narrow),
}
self.log_size = int(math.log(out_size, 2))
first_out_size = 2 ** (int(math.log(out_size, 2)))
self.conv_body_first = ConvLayer(
3, channels[f"{first_out_size}"], 1, bias=True, activate=True
)
# downsample
in_channels = channels[f"{first_out_size}"]
self.conv_body_down = nn.ModuleList()
for i in range(self.log_size, 2, -1):
out_channels = channels[f"{2**(i - 1)}"]
self.conv_body_down.append(ResBlock(in_channels, out_channels))
in_channels = out_channels
self.final_conv = ConvLayer(
in_channels, channels["4"], 3, bias=True, activate=True
)
# upsample
in_channels = channels["4"]
self.conv_body_up = nn.ModuleList()
for i in range(3, self.log_size + 1):
out_channels = channels[f"{2**i}"]
self.conv_body_up.append(ResUpBlock(in_channels, out_channels))
in_channels = out_channels
# to RGB
self.toRGB = nn.ModuleList()
for i in range(3, self.log_size + 1):
self.toRGB.append(
EqualConv2d(
channels[f"{2**i}"],
3,
1,
stride=1,
padding=0,
bias=True,
bias_init_val=0,
)
)
if different_w:
linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
else:
linear_out_channel = num_style_feat
self.final_linear = EqualLinear(
channels["4"] * 4 * 4,
linear_out_channel,
bias=True,
bias_init_val=0,
lr_mul=1,
activation=None,
)
# the decoder: stylegan2 generator with SFT modulations
self.stylegan_decoder = StyleGAN2GeneratorBilinearSFT(
out_size=out_size,
num_style_feat=num_style_feat,
num_mlp=num_mlp,
channel_multiplier=channel_multiplier,
lr_mlp=lr_mlp,
narrow=narrow,
sft_half=sft_half,
)
# load pre-trained stylegan2 model if necessary
if decoder_load_path:
self.stylegan_decoder.load_state_dict(
torch.load(
decoder_load_path, map_location=lambda storage, loc: storage
)["params_ema"]
)
# fix decoder without updating params
if fix_decoder:
for _, param in self.stylegan_decoder.named_parameters():
param.requires_grad = False
# for SFT modulations (scale and shift)
self.condition_scale = nn.ModuleList()
self.condition_shift = nn.ModuleList()
for i in range(3, self.log_size + 1):
out_channels = channels[f"{2**i}"]
if sft_half:
sft_out_channels = out_channels
else:
sft_out_channels = out_channels * 2
self.condition_scale.append(
nn.Sequential(
EqualConv2d(
out_channels,
out_channels,
3,
stride=1,
padding=1,
bias=True,
bias_init_val=0,
),
ScaledLeakyReLU(0.2),
EqualConv2d(
out_channels,
sft_out_channels,
3,
stride=1,
padding=1,
bias=True,
bias_init_val=1,
),
)
)
self.condition_shift.append(
nn.Sequential(
EqualConv2d(
out_channels,
out_channels,
3,
stride=1,
padding=1,
bias=True,
bias_init_val=0,
),
ScaledLeakyReLU(0.2),
EqualConv2d(
out_channels,
sft_out_channels,
3,
stride=1,
padding=1,
bias=True,
bias_init_val=0,
),
)
)
def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
"""Forward function for GFPGANBilinear.
Args:
x (Tensor): Input images.
return_latents (bool): Whether to return style latents. Default: False.
return_rgb (bool): Whether return intermediate rgb images. Default: True.
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
"""
conditions = []
unet_skips = []
out_rgbs = []
# encoder
feat = self.conv_body_first(x)
for i in range(self.log_size - 2):
feat = self.conv_body_down[i](feat)
unet_skips.insert(0, feat)
feat = self.final_conv(feat)
# style code
style_code = self.final_linear(feat.view(feat.size(0), -1))
if self.different_w:
style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
# decode
for i in range(self.log_size - 2):
# add unet skip
feat = feat + unet_skips[i]
# ResUpLayer
feat = self.conv_body_up[i](feat)
# generate scale and shift for SFT layers
scale = self.condition_scale[i](feat)
conditions.append(scale.clone())
shift = self.condition_shift[i](feat)
conditions.append(shift.clone())
# generate rgb images
if return_rgb:
out_rgbs.append(self.toRGB[i](feat))
# decoder
image, _ = self.stylegan_decoder(
[style_code],
conditions,
return_latents=return_latents,
input_is_latent=self.input_is_latent,
randomize_noise=randomize_noise,
)
return image, out_rgbs

View File

@ -0,0 +1,566 @@
# pylint: skip-file
# type: ignore
import math
import random
import torch
from torch import nn
from torch.nn import functional as F
from .fused_act import FusedLeakyReLU
from .stylegan2_arch import (
ConvLayer,
EqualConv2d,
EqualLinear,
ResBlock,
ScaledLeakyReLU,
StyleGAN2Generator,
)
class StyleGAN2GeneratorSFT(StyleGAN2Generator):
"""StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
Args:
out_size (int): The spatial size of outputs.
num_style_feat (int): Channel number of style features. Default: 512.
num_mlp (int): Layer number of MLP style layers. Default: 8.
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be
applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1).
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
narrow (float): The narrow ratio for channels. Default: 1.
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
"""
def __init__(
self,
out_size,
num_style_feat=512,
num_mlp=8,
channel_multiplier=2,
resample_kernel=(1, 3, 3, 1),
lr_mlp=0.01,
narrow=1,
sft_half=False,
):
super(StyleGAN2GeneratorSFT, self).__init__(
out_size,
num_style_feat=num_style_feat,
num_mlp=num_mlp,
channel_multiplier=channel_multiplier,
resample_kernel=resample_kernel,
lr_mlp=lr_mlp,
narrow=narrow,
)
self.sft_half = sft_half
def forward(
self,
styles,
conditions,
input_is_latent=False,
noise=None,
randomize_noise=True,
truncation=1,
truncation_latent=None,
inject_index=None,
return_latents=False,
):
"""Forward function for StyleGAN2GeneratorSFT.
Args:
styles (list[Tensor]): Sample codes of styles.
conditions (list[Tensor]): SFT conditions to generators.
input_is_latent (bool): Whether input is latent style. Default: False.
noise (Tensor | None): Input noise or None. Default: None.
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
truncation (float): The truncation ratio. Default: 1.
truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
inject_index (int | None): The injection index for mixing noise. Default: None.
return_latents (bool): Whether to return style latents. Default: False.
"""
# style codes -> latents with Style MLP layer
if not input_is_latent:
styles = [self.style_mlp(s) for s in styles]
# noises
if noise is None:
if randomize_noise:
noise = [None] * self.num_layers # for each style conv layer
else: # use the stored noise
noise = [
getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
]
# style truncation
if truncation < 1:
style_truncation = []
for style in styles:
style_truncation.append(
truncation_latent + truncation * (style - truncation_latent)
)
styles = style_truncation
# get style latents with injection
if len(styles) == 1:
inject_index = self.num_latent
if styles[0].ndim < 3:
# repeat latent code for all the layers
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else: # used for encoder with different latent code for each layer
latent = styles[0]
elif len(styles) == 2: # mixing noises
if inject_index is None:
inject_index = random.randint(1, self.num_latent - 1)
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
latent2 = (
styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
)
latent = torch.cat([latent1, latent2], 1)
# main generation
out = self.constant_input(latent.shape[0])
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
skip = self.to_rgb1(out, latent[:, 1])
i = 1
for conv1, conv2, noise1, noise2, to_rgb in zip(
self.style_convs[::2],
self.style_convs[1::2],
noise[1::2],
noise[2::2],
self.to_rgbs,
):
out = conv1(out, latent[:, i], noise=noise1)
# the conditions may have fewer levels
if i < len(conditions):
# SFT part to combine the conditions
if self.sft_half: # only apply SFT to half of the channels
out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
out_sft = out_sft * conditions[i - 1] + conditions[i]
out = torch.cat([out_same, out_sft], dim=1)
else: # apply SFT to all the channels
out = out * conditions[i - 1] + conditions[i]
out = conv2(out, latent[:, i + 1], noise=noise2)
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
i += 2
image = skip
if return_latents:
return image, latent
else:
return image, None
class ConvUpLayer(nn.Module):
"""Convolutional upsampling layer. It uses bilinear upsampler + Conv.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
stride (int): Stride of the convolution. Default: 1
padding (int): Zero-padding added to both sides of the input. Default: 0.
bias (bool): If ``True``, adds a learnable bias to the output. Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
activate (bool): Whether use activateion. Default: True.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
bias=True,
bias_init_val=0,
activate=True,
):
super(ConvUpLayer, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
# self.scale is used to scale the convolution weights, which is related to the common initializations.
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
self.weight = nn.Parameter(
torch.randn(out_channels, in_channels, kernel_size, kernel_size)
)
if bias and not activate:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
else:
self.register_parameter("bias", None)
# activation
if activate:
if bias:
self.activation = FusedLeakyReLU(out_channels)
else:
self.activation = ScaledLeakyReLU(0.2)
else:
self.activation = None
def forward(self, x):
# bilinear upsample
out = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False)
# conv
out = F.conv2d(
out,
self.weight * self.scale,
bias=self.bias,
stride=self.stride,
padding=self.padding,
)
# activation
if self.activation is not None:
out = self.activation(out)
return out
class ResUpBlock(nn.Module):
"""Residual block with upsampling.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
"""
def __init__(self, in_channels, out_channels):
super(ResUpBlock, self).__init__()
self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
self.conv2 = ConvUpLayer(
in_channels, out_channels, 3, stride=1, padding=1, bias=True, activate=True
)
self.skip = ConvUpLayer(
in_channels, out_channels, 1, bias=False, activate=False
)
def forward(self, x):
out = self.conv1(x)
out = self.conv2(out)
skip = self.skip(x)
out = (out + skip) / math.sqrt(2)
return out
class GFPGANv1(nn.Module):
"""The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
Args:
out_size (int): The spatial size of outputs.
num_style_feat (int): Channel number of style features. Default: 512.
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be
applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1).
decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
fix_decoder (bool): Whether to fix the decoder. Default: True.
num_mlp (int): Layer number of MLP style layers. Default: 8.
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
input_is_latent (bool): Whether input is latent style. Default: False.
different_w (bool): Whether to use different latent w for different layers. Default: False.
narrow (float): The narrow ratio for channels. Default: 1.
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
"""
def __init__(
self,
out_size,
num_style_feat=512,
channel_multiplier=1,
resample_kernel=(1, 3, 3, 1),
decoder_load_path=None,
fix_decoder=True,
# for stylegan decoder
num_mlp=8,
lr_mlp=0.01,
input_is_latent=False,
different_w=False,
narrow=1,
sft_half=False,
):
super(GFPGANv1, self).__init__()
self.input_is_latent = input_is_latent
self.different_w = different_w
self.num_style_feat = num_style_feat
unet_narrow = narrow * 0.5 # by default, use a half of input channels
channels = {
"4": int(512 * unet_narrow),
"8": int(512 * unet_narrow),
"16": int(512 * unet_narrow),
"32": int(512 * unet_narrow),
"64": int(256 * channel_multiplier * unet_narrow),
"128": int(128 * channel_multiplier * unet_narrow),
"256": int(64 * channel_multiplier * unet_narrow),
"512": int(32 * channel_multiplier * unet_narrow),
"1024": int(16 * channel_multiplier * unet_narrow),
}
self.log_size = int(math.log(out_size, 2))
first_out_size = 2 ** (int(math.log(out_size, 2)))
self.conv_body_first = ConvLayer(
3, channels[f"{first_out_size}"], 1, bias=True, activate=True
)
# downsample
in_channels = channels[f"{first_out_size}"]
self.conv_body_down = nn.ModuleList()
for i in range(self.log_size, 2, -1):
out_channels = channels[f"{2**(i - 1)}"]
self.conv_body_down.append(
ResBlock(in_channels, out_channels, resample_kernel)
)
in_channels = out_channels
self.final_conv = ConvLayer(
in_channels, channels["4"], 3, bias=True, activate=True
)
# upsample
in_channels = channels["4"]
self.conv_body_up = nn.ModuleList()
for i in range(3, self.log_size + 1):
out_channels = channels[f"{2**i}"]
self.conv_body_up.append(ResUpBlock(in_channels, out_channels))
in_channels = out_channels
# to RGB
self.toRGB = nn.ModuleList()
for i in range(3, self.log_size + 1):
self.toRGB.append(
EqualConv2d(
channels[f"{2**i}"],
3,
1,
stride=1,
padding=0,
bias=True,
bias_init_val=0,
)
)
if different_w:
linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
else:
linear_out_channel = num_style_feat
self.final_linear = EqualLinear(
channels["4"] * 4 * 4,
linear_out_channel,
bias=True,
bias_init_val=0,
lr_mul=1,
activation=None,
)
# the decoder: stylegan2 generator with SFT modulations
self.stylegan_decoder = StyleGAN2GeneratorSFT(
out_size=out_size,
num_style_feat=num_style_feat,
num_mlp=num_mlp,
channel_multiplier=channel_multiplier,
resample_kernel=resample_kernel,
lr_mlp=lr_mlp,
narrow=narrow,
sft_half=sft_half,
)
# load pre-trained stylegan2 model if necessary
if decoder_load_path:
self.stylegan_decoder.load_state_dict(
torch.load(
decoder_load_path, map_location=lambda storage, loc: storage
)["params_ema"]
)
# fix decoder without updating params
if fix_decoder:
for _, param in self.stylegan_decoder.named_parameters():
param.requires_grad = False
# for SFT modulations (scale and shift)
self.condition_scale = nn.ModuleList()
self.condition_shift = nn.ModuleList()
for i in range(3, self.log_size + 1):
out_channels = channels[f"{2**i}"]
if sft_half:
sft_out_channels = out_channels
else:
sft_out_channels = out_channels * 2
self.condition_scale.append(
nn.Sequential(
EqualConv2d(
out_channels,
out_channels,
3,
stride=1,
padding=1,
bias=True,
bias_init_val=0,
),
ScaledLeakyReLU(0.2),
EqualConv2d(
out_channels,
sft_out_channels,
3,
stride=1,
padding=1,
bias=True,
bias_init_val=1,
),
)
)
self.condition_shift.append(
nn.Sequential(
EqualConv2d(
out_channels,
out_channels,
3,
stride=1,
padding=1,
bias=True,
bias_init_val=0,
),
ScaledLeakyReLU(0.2),
EqualConv2d(
out_channels,
sft_out_channels,
3,
stride=1,
padding=1,
bias=True,
bias_init_val=0,
),
)
)
def forward(
self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs
):
"""Forward function for GFPGANv1.
Args:
x (Tensor): Input images.
return_latents (bool): Whether to return style latents. Default: False.
return_rgb (bool): Whether return intermediate rgb images. Default: True.
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
"""
conditions = []
unet_skips = []
out_rgbs = []
# encoder
feat = self.conv_body_first(x)
for i in range(self.log_size - 2):
feat = self.conv_body_down[i](feat)
unet_skips.insert(0, feat)
feat = self.final_conv(feat)
# style code
style_code = self.final_linear(feat.view(feat.size(0), -1))
if self.different_w:
style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
# decode
for i in range(self.log_size - 2):
# add unet skip
feat = feat + unet_skips[i]
# ResUpLayer
feat = self.conv_body_up[i](feat)
# generate scale and shift for SFT layers
scale = self.condition_scale[i](feat)
conditions.append(scale.clone())
shift = self.condition_shift[i](feat)
conditions.append(shift.clone())
# generate rgb images
if return_rgb:
out_rgbs.append(self.toRGB[i](feat))
# decoder
image, _ = self.stylegan_decoder(
[style_code],
conditions,
return_latents=return_latents,
input_is_latent=self.input_is_latent,
randomize_noise=randomize_noise,
)
return image, out_rgbs
class FacialComponentDiscriminator(nn.Module):
"""Facial component (eyes, mouth, noise) discriminator used in GFPGAN."""
def __init__(self):
super(FacialComponentDiscriminator, self).__init__()
# It now uses a VGG-style architectrue with fixed model size
self.conv1 = ConvLayer(
3,
64,
3,
downsample=False,
resample_kernel=(1, 3, 3, 1),
bias=True,
activate=True,
)
self.conv2 = ConvLayer(
64,
128,
3,
downsample=True,
resample_kernel=(1, 3, 3, 1),
bias=True,
activate=True,
)
self.conv3 = ConvLayer(
128,
128,
3,
downsample=False,
resample_kernel=(1, 3, 3, 1),
bias=True,
activate=True,
)
self.conv4 = ConvLayer(
128,
256,
3,
downsample=True,
resample_kernel=(1, 3, 3, 1),
bias=True,
activate=True,
)
self.conv5 = ConvLayer(
256,
256,
3,
downsample=False,
resample_kernel=(1, 3, 3, 1),
bias=True,
activate=True,
)
self.final_conv = ConvLayer(256, 1, 3, bias=True, activate=False)
def forward(self, x, return_feats=False, **kwargs):
"""Forward function for FacialComponentDiscriminator.
Args:
x (Tensor): Input images.
return_feats (bool): Whether to return intermediate features. Default: False.
"""
feat = self.conv1(x)
feat = self.conv3(self.conv2(feat))
rlt_feats = []
if return_feats:
rlt_feats.append(feat.clone())
feat = self.conv5(self.conv4(feat))
if return_feats:
rlt_feats.append(feat.clone())
out = self.final_conv(feat)
if return_feats:
return out, rlt_feats
else:
return out, None

View File

@ -0,0 +1,370 @@
# pylint: skip-file
# type: ignore
import math
import random
import torch
from torch import nn
from torch.nn import functional as F
from .stylegan2_clean_arch import StyleGAN2GeneratorClean
class StyleGAN2GeneratorCSFT(StyleGAN2GeneratorClean):
"""StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
Args:
out_size (int): The spatial size of outputs.
num_style_feat (int): Channel number of style features. Default: 512.
num_mlp (int): Layer number of MLP style layers. Default: 8.
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
narrow (float): The narrow ratio for channels. Default: 1.
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
"""
def __init__(
self,
out_size,
num_style_feat=512,
num_mlp=8,
channel_multiplier=2,
narrow=1,
sft_half=False,
):
super(StyleGAN2GeneratorCSFT, self).__init__(
out_size,
num_style_feat=num_style_feat,
num_mlp=num_mlp,
channel_multiplier=channel_multiplier,
narrow=narrow,
)
self.sft_half = sft_half
def forward(
self,
styles,
conditions,
input_is_latent=False,
noise=None,
randomize_noise=True,
truncation=1,
truncation_latent=None,
inject_index=None,
return_latents=False,
):
"""Forward function for StyleGAN2GeneratorCSFT.
Args:
styles (list[Tensor]): Sample codes of styles.
conditions (list[Tensor]): SFT conditions to generators.
input_is_latent (bool): Whether input is latent style. Default: False.
noise (Tensor | None): Input noise or None. Default: None.
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
truncation (float): The truncation ratio. Default: 1.
truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
inject_index (int | None): The injection index for mixing noise. Default: None.
return_latents (bool): Whether to return style latents. Default: False.
"""
# style codes -> latents with Style MLP layer
if not input_is_latent:
styles = [self.style_mlp(s) for s in styles]
# noises
if noise is None:
if randomize_noise:
noise = [None] * self.num_layers # for each style conv layer
else: # use the stored noise
noise = [
getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
]
# style truncation
if truncation < 1:
style_truncation = []
for style in styles:
style_truncation.append(
truncation_latent + truncation * (style - truncation_latent)
)
styles = style_truncation
# get style latents with injection
if len(styles) == 1:
inject_index = self.num_latent
if styles[0].ndim < 3:
# repeat latent code for all the layers
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else: # used for encoder with different latent code for each layer
latent = styles[0]
elif len(styles) == 2: # mixing noises
if inject_index is None:
inject_index = random.randint(1, self.num_latent - 1)
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
latent2 = (
styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
)
latent = torch.cat([latent1, latent2], 1)
# main generation
out = self.constant_input(latent.shape[0])
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
skip = self.to_rgb1(out, latent[:, 1])
i = 1
for conv1, conv2, noise1, noise2, to_rgb in zip(
self.style_convs[::2],
self.style_convs[1::2],
noise[1::2],
noise[2::2],
self.to_rgbs,
):
out = conv1(out, latent[:, i], noise=noise1)
# the conditions may have fewer levels
if i < len(conditions):
# SFT part to combine the conditions
if self.sft_half: # only apply SFT to half of the channels
out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
out_sft = out_sft * conditions[i - 1] + conditions[i]
out = torch.cat([out_same, out_sft], dim=1)
else: # apply SFT to all the channels
out = out * conditions[i - 1] + conditions[i]
out = conv2(out, latent[:, i + 1], noise=noise2)
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
i += 2
image = skip
if return_latents:
return image, latent
else:
return image, None
class ResBlock(nn.Module):
"""Residual block with bilinear upsampling/downsampling.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
mode (str): Upsampling/downsampling mode. Options: down | up. Default: down.
"""
def __init__(self, in_channels, out_channels, mode="down"):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
if mode == "down":
self.scale_factor = 0.5
elif mode == "up":
self.scale_factor = 2
def forward(self, x):
out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
# upsample/downsample
out = F.interpolate(
out, scale_factor=self.scale_factor, mode="bilinear", align_corners=False
)
out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
# skip
x = F.interpolate(
x, scale_factor=self.scale_factor, mode="bilinear", align_corners=False
)
skip = self.skip(x)
out = out + skip
return out
class GFPGANv1Clean(nn.Module):
"""The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
Args:
out_size (int): The spatial size of outputs.
num_style_feat (int): Channel number of style features. Default: 512.
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
fix_decoder (bool): Whether to fix the decoder. Default: True.
num_mlp (int): Layer number of MLP style layers. Default: 8.
input_is_latent (bool): Whether input is latent style. Default: False.
different_w (bool): Whether to use different latent w for different layers. Default: False.
narrow (float): The narrow ratio for channels. Default: 1.
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
"""
def __init__(
self,
state_dict,
):
super(GFPGANv1Clean, self).__init__()
out_size = 512
num_style_feat = 512
channel_multiplier = 2
decoder_load_path = None
fix_decoder = False
num_mlp = 8
input_is_latent = True
different_w = True
narrow = 1
sft_half = True
self.model_arch = "GFPGAN"
self.sub_type = "Face SR"
self.scale = 8
self.in_nc = 3
self.out_nc = 3
self.state = state_dict
self.supports_fp16 = False
self.supports_bf16 = True
self.min_size_restriction = 512
self.input_is_latent = input_is_latent
self.different_w = different_w
self.num_style_feat = num_style_feat
unet_narrow = narrow * 0.5 # by default, use a half of input channels
channels = {
"4": int(512 * unet_narrow),
"8": int(512 * unet_narrow),
"16": int(512 * unet_narrow),
"32": int(512 * unet_narrow),
"64": int(256 * channel_multiplier * unet_narrow),
"128": int(128 * channel_multiplier * unet_narrow),
"256": int(64 * channel_multiplier * unet_narrow),
"512": int(32 * channel_multiplier * unet_narrow),
"1024": int(16 * channel_multiplier * unet_narrow),
}
self.log_size = int(math.log(out_size, 2))
first_out_size = 2 ** (int(math.log(out_size, 2)))
self.conv_body_first = nn.Conv2d(3, channels[f"{first_out_size}"], 1)
# downsample
in_channels = channels[f"{first_out_size}"]
self.conv_body_down = nn.ModuleList()
for i in range(self.log_size, 2, -1):
out_channels = channels[f"{2**(i - 1)}"]
self.conv_body_down.append(ResBlock(in_channels, out_channels, mode="down"))
in_channels = out_channels
self.final_conv = nn.Conv2d(in_channels, channels["4"], 3, 1, 1)
# upsample
in_channels = channels["4"]
self.conv_body_up = nn.ModuleList()
for i in range(3, self.log_size + 1):
out_channels = channels[f"{2**i}"]
self.conv_body_up.append(ResBlock(in_channels, out_channels, mode="up"))
in_channels = out_channels
# to RGB
self.toRGB = nn.ModuleList()
for i in range(3, self.log_size + 1):
self.toRGB.append(nn.Conv2d(channels[f"{2**i}"], 3, 1))
if different_w:
linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
else:
linear_out_channel = num_style_feat
self.final_linear = nn.Linear(channels["4"] * 4 * 4, linear_out_channel)
# the decoder: stylegan2 generator with SFT modulations
self.stylegan_decoder = StyleGAN2GeneratorCSFT(
out_size=out_size,
num_style_feat=num_style_feat,
num_mlp=num_mlp,
channel_multiplier=channel_multiplier,
narrow=narrow,
sft_half=sft_half,
)
# load pre-trained stylegan2 model if necessary
if decoder_load_path:
self.stylegan_decoder.load_state_dict(
torch.load(
decoder_load_path, map_location=lambda storage, loc: storage
)["params_ema"]
)
# fix decoder without updating params
if fix_decoder:
for _, param in self.stylegan_decoder.named_parameters():
param.requires_grad = False
# for SFT modulations (scale and shift)
self.condition_scale = nn.ModuleList()
self.condition_shift = nn.ModuleList()
for i in range(3, self.log_size + 1):
out_channels = channels[f"{2**i}"]
if sft_half:
sft_out_channels = out_channels
else:
sft_out_channels = out_channels * 2
self.condition_scale.append(
nn.Sequential(
nn.Conv2d(out_channels, out_channels, 3, 1, 1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1),
)
)
self.condition_shift.append(
nn.Sequential(
nn.Conv2d(out_channels, out_channels, 3, 1, 1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1),
)
)
self.load_state_dict(state_dict)
def forward(
self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs
):
"""Forward function for GFPGANv1Clean.
Args:
x (Tensor): Input images.
return_latents (bool): Whether to return style latents. Default: False.
return_rgb (bool): Whether return intermediate rgb images. Default: True.
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
"""
conditions = []
unet_skips = []
out_rgbs = []
# encoder
feat = F.leaky_relu_(self.conv_body_first(x), negative_slope=0.2)
for i in range(self.log_size - 2):
feat = self.conv_body_down[i](feat)
unet_skips.insert(0, feat)
feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2)
# style code
style_code = self.final_linear(feat.view(feat.size(0), -1))
if self.different_w:
style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
# decode
for i in range(self.log_size - 2):
# add unet skip
feat = feat + unet_skips[i]
# ResUpLayer
feat = self.conv_body_up[i](feat)
# generate scale and shift for SFT layers
scale = self.condition_scale[i](feat)
conditions.append(scale.clone())
shift = self.condition_shift[i](feat)
conditions.append(shift.clone())
# generate rgb images
if return_rgb:
out_rgbs.append(self.toRGB[i](feat))
# decoder
image, _ = self.stylegan_decoder(
[style_code],
conditions,
return_latents=return_latents,
input_is_latent=self.input_is_latent,
randomize_noise=randomize_noise,
)
return image, out_rgbs

View File

@ -0,0 +1,776 @@
# pylint: skip-file
# type: ignore
"""Modified from https://github.com/wzhouxiff/RestoreFormer
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class VectorQuantizer(nn.Module):
"""
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
____________________________________________
Discretization bottleneck part of the VQ-VAE.
Inputs:
- n_e : number of embeddings
- e_dim : dimension of embedding
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
_____________________________________________
"""
def __init__(self, n_e, e_dim, beta):
super(VectorQuantizer, self).__init__()
self.n_e = n_e
self.e_dim = e_dim
self.beta = beta
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
def forward(self, z):
"""
Inputs the output of the encoder network z and maps it to a discrete
one-hot vector that is the index of the closest embedding vector e_j
z (continuous) -> z_q (discrete)
z.shape = (batch, channel, height, width)
quantization pipeline:
1. get encoder input (B,C,H,W)
2. flatten input to (B*H*W,C)
"""
# reshape z -> (batch, height, width, channel) and flatten
z = z.permute(0, 2, 3, 1).contiguous()
z_flattened = z.view(-1, self.e_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = (
torch.sum(z_flattened**2, dim=1, keepdim=True)
+ torch.sum(self.embedding.weight**2, dim=1)
- 2 * torch.matmul(z_flattened, self.embedding.weight.t())
)
# could possible replace this here
# #\start...
# find closest encodings
min_value, min_encoding_indices = torch.min(d, dim=1)
min_encoding_indices = min_encoding_indices.unsqueeze(1)
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.n_e).to(z)
min_encodings.scatter_(1, min_encoding_indices, 1)
# dtype min encodings: torch.float32
# min_encodings shape: torch.Size([2048, 512])
# min_encoding_indices.shape: torch.Size([2048, 1])
# get quantized latent vectors
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
# .........\end
# with:
# .........\start
# min_encoding_indices = torch.argmin(d, dim=1)
# z_q = self.embedding(min_encoding_indices)
# ......\end......... (TODO)
# compute loss for embedding
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean(
(z_q - z.detach()) ** 2
)
# preserve gradients
z_q = z + (z_q - z).detach()
# perplexity
e_mean = torch.mean(min_encodings, dim=0)
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q, loss, (perplexity, min_encodings, min_encoding_indices, d)
def get_codebook_entry(self, indices, shape):
# shape specifying (batch, height, width, channel)
# TODO: check for more easy handling with nn.Embedding
min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices)
min_encodings.scatter_(1, indices[:, None], 1)
# get quantized latent vectors
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
if shape is not None:
z_q = z_q.view(shape)
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q
# pytorch_diffusion + derived encoder decoder
def nonlinearity(x):
# swish
return x * torch.sigmoid(x)
def Normalize(in_channels):
return torch.nn.GroupNorm(
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
)
class Upsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=1, padding=1
)
def forward(self, x):
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.conv = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=2, padding=0
)
def forward(self, x):
if self.with_conv:
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
return x
class ResnetBlock(nn.Module):
def __init__(
self,
*,
in_channels,
out_channels=None,
conv_shortcut=False,
dropout,
temb_channels=512
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
if temb_channels > 0:
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = torch.nn.Conv2d(
out_channels, out_channels, kernel_size=3, stride=1, padding=1
)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
else:
self.nin_shortcut = torch.nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, x, temb):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
if temb is not None:
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class MultiHeadAttnBlock(nn.Module):
def __init__(self, in_channels, head_size=1):
super().__init__()
self.in_channels = in_channels
self.head_size = head_size
self.att_size = in_channels // head_size
assert (
in_channels % head_size == 0
), "The size of head should be divided by the number of channels."
self.norm1 = Normalize(in_channels)
self.norm2 = Normalize(in_channels)
self.q = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.k = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.v = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.proj_out = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.num = 0
def forward(self, x, y=None):
h_ = x
h_ = self.norm1(h_)
if y is None:
y = h_
else:
y = self.norm2(y)
q = self.q(y)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, self.head_size, self.att_size, h * w)
q = q.permute(0, 3, 1, 2) # b, hw, head, att
k = k.reshape(b, self.head_size, self.att_size, h * w)
k = k.permute(0, 3, 1, 2)
v = v.reshape(b, self.head_size, self.att_size, h * w)
v = v.permute(0, 3, 1, 2)
q = q.transpose(1, 2)
v = v.transpose(1, 2)
k = k.transpose(1, 2).transpose(2, 3)
scale = int(self.att_size) ** (-0.5)
q.mul_(scale)
w_ = torch.matmul(q, k)
w_ = F.softmax(w_, dim=3)
w_ = w_.matmul(v)
w_ = w_.transpose(1, 2).contiguous() # [b, h*w, head, att]
w_ = w_.view(b, h, w, -1)
w_ = w_.permute(0, 3, 1, 2)
w_ = self.proj_out(w_)
return x + w_
class MultiHeadEncoder(nn.Module):
def __init__(
self,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks=2,
attn_resolutions=(16,),
dropout=0.0,
resamp_with_conv=True,
in_channels=3,
resolution=512,
z_channels=256,
double_z=True,
enable_mid=True,
head_size=1,
**ignore_kwargs
):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.enable_mid = enable_mid
# downsampling
self.conv_in = torch.nn.Conv2d(
in_channels, self.ch, kernel_size=3, stride=1, padding=1
)
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(MultiHeadAttnBlock(block_in, head_size))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in, resamp_with_conv)
curr_res = curr_res // 2
self.down.append(down)
# middle
if self.enable_mid:
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size)
self.mid.block_2 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(
block_in,
2 * z_channels if double_z else z_channels,
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, x):
hs = {}
# timestep embedding
temb = None
# downsampling
h = self.conv_in(x)
hs["in"] = h
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](h, temb)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
if i_level != self.num_resolutions - 1:
# hs.append(h)
hs["block_" + str(i_level)] = h
h = self.down[i_level].downsample(h)
# middle
# h = hs[-1]
if self.enable_mid:
h = self.mid.block_1(h, temb)
hs["block_" + str(i_level) + "_atten"] = h
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
hs["mid_atten"] = h
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
# hs.append(h)
hs["out"] = h
return hs
class MultiHeadDecoder(nn.Module):
def __init__(
self,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks=2,
attn_resolutions=(16,),
dropout=0.0,
resamp_with_conv=True,
in_channels=3,
resolution=512,
z_channels=256,
give_pre_end=False,
enable_mid=True,
head_size=1,
**ignorekwargs
):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.give_pre_end = give_pre_end
self.enable_mid = enable_mid
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
print(
"Working with z of shape {} = {} dimensions.".format(
self.z_shape, np.prod(self.z_shape)
)
)
# z to block_in
self.conv_in = torch.nn.Conv2d(
z_channels, block_in, kernel_size=3, stride=1, padding=1
)
# middle
if self.enable_mid:
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size)
self.mid.block_2 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(MultiHeadAttnBlock(block_in, head_size))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(
block_in, out_ch, kernel_size=3, stride=1, padding=1
)
def forward(self, z):
# assert z.shape[1:] == self.z_shape[1:]
self.last_z_shape = z.shape
# timestep embedding
temb = None
# z to block_in
h = self.conv_in(z)
# middle
if self.enable_mid:
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h, temb)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
if self.give_pre_end:
return h
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class MultiHeadDecoderTransformer(nn.Module):
def __init__(
self,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks=2,
attn_resolutions=(16,),
dropout=0.0,
resamp_with_conv=True,
in_channels=3,
resolution=512,
z_channels=256,
give_pre_end=False,
enable_mid=True,
head_size=1,
**ignorekwargs
):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.give_pre_end = give_pre_end
self.enable_mid = enable_mid
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
print(
"Working with z of shape {} = {} dimensions.".format(
self.z_shape, np.prod(self.z_shape)
)
)
# z to block_in
self.conv_in = torch.nn.Conv2d(
z_channels, block_in, kernel_size=3, stride=1, padding=1
)
# middle
if self.enable_mid:
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size)
self.mid.block_2 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(MultiHeadAttnBlock(block_in, head_size))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(
block_in, out_ch, kernel_size=3, stride=1, padding=1
)
def forward(self, z, hs):
# assert z.shape[1:] == self.z_shape[1:]
# self.last_z_shape = z.shape
# timestep embedding
temb = None
# z to block_in
h = self.conv_in(z)
# middle
if self.enable_mid:
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h, hs["mid_atten"])
h = self.mid.block_2(h, temb)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h, temb)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](
h, hs["block_" + str(i_level) + "_atten"]
)
# hfeature = h.clone()
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
if self.give_pre_end:
return h
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class RestoreFormer(nn.Module):
def __init__(
self,
state_dict,
):
super(RestoreFormer, self).__init__()
n_embed = 1024
embed_dim = 256
ch = 64
out_ch = 3
ch_mult = (1, 2, 2, 4, 4, 8)
num_res_blocks = 2
attn_resolutions = (16,)
dropout = 0.0
in_channels = 3
resolution = 512
z_channels = 256
double_z = False
enable_mid = True
fix_decoder = False
fix_codebook = True
fix_encoder = False
head_size = 8
self.model_arch = "RestoreFormer"
self.sub_type = "Face SR"
self.scale = 8
self.in_nc = 3
self.out_nc = out_ch
self.state = state_dict
self.supports_fp16 = False
self.supports_bf16 = True
self.min_size_restriction = 16
self.encoder = MultiHeadEncoder(
ch=ch,
out_ch=out_ch,
ch_mult=ch_mult,
num_res_blocks=num_res_blocks,
attn_resolutions=attn_resolutions,
dropout=dropout,
in_channels=in_channels,
resolution=resolution,
z_channels=z_channels,
double_z=double_z,
enable_mid=enable_mid,
head_size=head_size,
)
self.decoder = MultiHeadDecoderTransformer(
ch=ch,
out_ch=out_ch,
ch_mult=ch_mult,
num_res_blocks=num_res_blocks,
attn_resolutions=attn_resolutions,
dropout=dropout,
in_channels=in_channels,
resolution=resolution,
z_channels=z_channels,
enable_mid=enable_mid,
head_size=head_size,
)
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25)
self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1)
if fix_decoder:
for _, param in self.decoder.named_parameters():
param.requires_grad = False
for _, param in self.post_quant_conv.named_parameters():
param.requires_grad = False
for _, param in self.quantize.named_parameters():
param.requires_grad = False
elif fix_codebook:
for _, param in self.quantize.named_parameters():
param.requires_grad = False
if fix_encoder:
for _, param in self.encoder.named_parameters():
param.requires_grad = False
self.load_state_dict(state_dict)
def encode(self, x):
hs = self.encoder(x)
h = self.quant_conv(hs["out"])
quant, emb_loss, info = self.quantize(h)
return quant, emb_loss, info, hs
def decode(self, quant, hs):
quant = self.post_quant_conv(quant)
dec = self.decoder(quant, hs)
return dec
def forward(self, input, **kwargs):
quant, diff, info, hs = self.encode(input)
dec = self.decode(quant, hs)
return dec, None

View File

@ -0,0 +1,865 @@
# pylint: skip-file
# type: ignore
import math
import random
import torch
from torch import nn
from torch.nn import functional as F
from .fused_act import FusedLeakyReLU, fused_leaky_relu
from .upfirdn2d import upfirdn2d
class NormStyleCode(nn.Module):
def forward(self, x):
"""Normalize the style codes.
Args:
x (Tensor): Style codes with shape (b, c).
Returns:
Tensor: Normalized tensor.
"""
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
def make_resample_kernel(k):
"""Make resampling kernel for UpFirDn.
Args:
k (list[int]): A list indicating the 1D resample kernel magnitude.
Returns:
Tensor: 2D resampled kernel.
"""
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None] # to 2D kernel, outer product
# normalize
k /= k.sum()
return k
class UpFirDnUpsample(nn.Module):
"""Upsample, FIR filter, and downsample (upsampole version).
References:
1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501
2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501
Args:
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude.
factor (int): Upsampling scale factor. Default: 2.
"""
def __init__(self, resample_kernel, factor=2):
super(UpFirDnUpsample, self).__init__()
self.kernel = make_resample_kernel(resample_kernel) * (factor**2)
self.factor = factor
pad = self.kernel.shape[0] - factor
self.pad = ((pad + 1) // 2 + factor - 1, pad // 2)
def forward(self, x):
out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1, pad=self.pad)
return out
def __repr__(self):
return f"{self.__class__.__name__}(factor={self.factor})"
class UpFirDnDownsample(nn.Module):
"""Upsample, FIR filter, and downsample (downsampole version).
Args:
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude.
factor (int): Downsampling scale factor. Default: 2.
"""
def __init__(self, resample_kernel, factor=2):
super(UpFirDnDownsample, self).__init__()
self.kernel = make_resample_kernel(resample_kernel)
self.factor = factor
pad = self.kernel.shape[0] - factor
self.pad = ((pad + 1) // 2, pad // 2)
def forward(self, x):
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=self.factor, pad=self.pad)
return out
def __repr__(self):
return f"{self.__class__.__name__}(factor={self.factor})"
class UpFirDnSmooth(nn.Module):
"""Upsample, FIR filter, and downsample (smooth version).
Args:
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude.
upsample_factor (int): Upsampling scale factor. Default: 1.
downsample_factor (int): Downsampling scale factor. Default: 1.
kernel_size (int): Kernel size: Default: 1.
"""
def __init__(
self, resample_kernel, upsample_factor=1, downsample_factor=1, kernel_size=1
):
super(UpFirDnSmooth, self).__init__()
self.upsample_factor = upsample_factor
self.downsample_factor = downsample_factor
self.kernel = make_resample_kernel(resample_kernel)
if upsample_factor > 1:
self.kernel = self.kernel * (upsample_factor**2)
if upsample_factor > 1:
pad = (self.kernel.shape[0] - upsample_factor) - (kernel_size - 1)
self.pad = ((pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1)
elif downsample_factor > 1:
pad = (self.kernel.shape[0] - downsample_factor) + (kernel_size - 1)
self.pad = ((pad + 1) // 2, pad // 2)
else:
raise NotImplementedError
def forward(self, x):
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad)
return out
def __repr__(self):
return (
f"{self.__class__.__name__}(upsample_factor={self.upsample_factor}"
f", downsample_factor={self.downsample_factor})"
)
class EqualLinear(nn.Module):
"""Equalized Linear as StyleGAN2.
Args:
in_channels (int): Size of each sample.
out_channels (int): Size of each output sample.
bias (bool): If set to ``False``, the layer will not learn an additive
bias. Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
lr_mul (float): Learning rate multiplier. Default: 1.
activation (None | str): The activation after ``linear`` operation.
Supported: 'fused_lrelu', None. Default: None.
"""
def __init__(
self,
in_channels,
out_channels,
bias=True,
bias_init_val=0,
lr_mul=1,
activation=None,
):
super(EqualLinear, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.lr_mul = lr_mul
self.activation = activation
if self.activation not in ["fused_lrelu", None]:
raise ValueError(
f"Wrong activation value in EqualLinear: {activation}"
"Supported ones are: ['fused_lrelu', None]."
)
self.scale = (1 / math.sqrt(in_channels)) * lr_mul
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
else:
self.register_parameter("bias", None)
def forward(self, x):
if self.bias is None:
bias = None
else:
bias = self.bias * self.lr_mul
if self.activation == "fused_lrelu":
out = F.linear(x, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(x, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f"{self.__class__.__name__}(in_channels={self.in_channels}, "
f"out_channels={self.out_channels}, bias={self.bias is not None})"
)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d used in StyleGAN2.
There is no bias in ModulatedConv2d.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether to demodulate in the conv layer.
Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
Default: None.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. Default: (1, 3, 3, 1).
eps (float): A value added to the denominator for numerical stability.
Default: 1e-8.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
num_style_feat,
demodulate=True,
sample_mode=None,
resample_kernel=(1, 3, 3, 1),
eps=1e-8,
):
super(ModulatedConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.demodulate = demodulate
self.sample_mode = sample_mode
self.eps = eps
if self.sample_mode == "upsample":
self.smooth = UpFirDnSmooth(
resample_kernel,
upsample_factor=2,
downsample_factor=1,
kernel_size=kernel_size,
)
elif self.sample_mode == "downsample":
self.smooth = UpFirDnSmooth(
resample_kernel,
upsample_factor=1,
downsample_factor=2,
kernel_size=kernel_size,
)
elif self.sample_mode is None:
pass
else:
raise ValueError(
f"Wrong sample mode {self.sample_mode}, "
"supported ones are ['upsample', 'downsample', None]."
)
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
# modulation inside each modulated conv
self.modulation = EqualLinear(
num_style_feat,
in_channels,
bias=True,
bias_init_val=1,
lr_mul=1,
activation=None,
)
self.weight = nn.Parameter(
torch.randn(1, out_channels, in_channels, kernel_size, kernel_size)
)
self.padding = kernel_size // 2
def forward(self, x, style):
"""Forward function.
Args:
x (Tensor): Tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
Returns:
Tensor: Modulated tensor after convolution.
"""
b, c, h, w = x.shape # c = c_in
# weight modulation
style = self.modulation(style).view(b, 1, c, 1, 1)
# self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
weight = self.scale * self.weight * style # (b, c_out, c_in, k, k)
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
weight = weight.view(
b * self.out_channels, c, self.kernel_size, self.kernel_size
)
if self.sample_mode == "upsample":
x = x.view(1, b * c, h, w)
weight = weight.view(
b, self.out_channels, c, self.kernel_size, self.kernel_size
)
weight = weight.transpose(1, 2).reshape(
b * c, self.out_channels, self.kernel_size, self.kernel_size
)
out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
out = self.smooth(out)
elif self.sample_mode == "downsample":
x = self.smooth(x)
x = x.view(1, b * c, *x.shape[2:4])
out = F.conv2d(x, weight, padding=0, stride=2, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
else:
x = x.view(1, b * c, h, w)
# weight: (b*c_out, c_in, k, k), groups=b
out = F.conv2d(x, weight, padding=self.padding, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
return out
def __repr__(self):
return (
f"{self.__class__.__name__}(in_channels={self.in_channels}, "
f"out_channels={self.out_channels}, "
f"kernel_size={self.kernel_size}, "
f"demodulate={self.demodulate}, sample_mode={self.sample_mode})"
)
class StyleConv(nn.Module):
"""Style conv.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether demodulate in the conv layer. Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
Default: None.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. Default: (1, 3, 3, 1).
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
num_style_feat,
demodulate=True,
sample_mode=None,
resample_kernel=(1, 3, 3, 1),
):
super(StyleConv, self).__init__()
self.modulated_conv = ModulatedConv2d(
in_channels,
out_channels,
kernel_size,
num_style_feat,
demodulate=demodulate,
sample_mode=sample_mode,
resample_kernel=resample_kernel,
)
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
self.activate = FusedLeakyReLU(out_channels)
def forward(self, x, style, noise=None):
# modulate
out = self.modulated_conv(x, style)
# noise injection
if noise is None:
b, _, h, w = out.shape
noise = out.new_empty(b, 1, h, w).normal_()
out = out + self.weight * noise
# activation (with bias)
out = self.activate(out)
return out
class ToRGB(nn.Module):
"""To RGB from features.
Args:
in_channels (int): Channel number of input.
num_style_feat (int): Channel number of style features.
upsample (bool): Whether to upsample. Default: True.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. Default: (1, 3, 3, 1).
"""
def __init__(
self, in_channels, num_style_feat, upsample=True, resample_kernel=(1, 3, 3, 1)
):
super(ToRGB, self).__init__()
if upsample:
self.upsample = UpFirDnUpsample(resample_kernel, factor=2)
else:
self.upsample = None
self.modulated_conv = ModulatedConv2d(
in_channels,
3,
kernel_size=1,
num_style_feat=num_style_feat,
demodulate=False,
sample_mode=None,
)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, x, style, skip=None):
"""Forward function.
Args:
x (Tensor): Feature tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
skip (Tensor): Base/skip tensor. Default: None.
Returns:
Tensor: RGB images.
"""
out = self.modulated_conv(x, style)
out = out + self.bias
if skip is not None:
if self.upsample:
skip = self.upsample(skip)
out = out + skip
return out
class ConstantInput(nn.Module):
"""Constant input.
Args:
num_channel (int): Channel number of constant input.
size (int): Spatial size of constant input.
"""
def __init__(self, num_channel, size):
super(ConstantInput, self).__init__()
self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
def forward(self, batch):
out = self.weight.repeat(batch, 1, 1, 1)
return out
class StyleGAN2Generator(nn.Module):
"""StyleGAN2 Generator.
Args:
out_size (int): The spatial size of outputs.
num_style_feat (int): Channel number of style features. Default: 512.
num_mlp (int): Layer number of MLP style layers. Default: 8.
channel_multiplier (int): Channel multiplier for large networks of
StyleGAN2. Default: 2.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. A cross production will be applied to extent 1D resample
kernel to 2D resample kernel. Default: (1, 3, 3, 1).
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
narrow (float): Narrow ratio for channels. Default: 1.0.
"""
def __init__(
self,
out_size,
num_style_feat=512,
num_mlp=8,
channel_multiplier=2,
resample_kernel=(1, 3, 3, 1),
lr_mlp=0.01,
narrow=1,
):
super(StyleGAN2Generator, self).__init__()
# Style MLP layers
self.num_style_feat = num_style_feat
style_mlp_layers = [NormStyleCode()]
for i in range(num_mlp):
style_mlp_layers.append(
EqualLinear(
num_style_feat,
num_style_feat,
bias=True,
bias_init_val=0,
lr_mul=lr_mlp,
activation="fused_lrelu",
)
)
self.style_mlp = nn.Sequential(*style_mlp_layers)
channels = {
"4": int(512 * narrow),
"8": int(512 * narrow),
"16": int(512 * narrow),
"32": int(512 * narrow),
"64": int(256 * channel_multiplier * narrow),
"128": int(128 * channel_multiplier * narrow),
"256": int(64 * channel_multiplier * narrow),
"512": int(32 * channel_multiplier * narrow),
"1024": int(16 * channel_multiplier * narrow),
}
self.channels = channels
self.constant_input = ConstantInput(channels["4"], size=4)
self.style_conv1 = StyleConv(
channels["4"],
channels["4"],
kernel_size=3,
num_style_feat=num_style_feat,
demodulate=True,
sample_mode=None,
resample_kernel=resample_kernel,
)
self.to_rgb1 = ToRGB(
channels["4"],
num_style_feat,
upsample=False,
resample_kernel=resample_kernel,
)
self.log_size = int(math.log(out_size, 2))
self.num_layers = (self.log_size - 2) * 2 + 1
self.num_latent = self.log_size * 2 - 2
self.style_convs = nn.ModuleList()
self.to_rgbs = nn.ModuleList()
self.noises = nn.Module()
in_channels = channels["4"]
# noise
for layer_idx in range(self.num_layers):
resolution = 2 ** ((layer_idx + 5) // 2)
shape = [1, 1, resolution, resolution]
self.noises.register_buffer(f"noise{layer_idx}", torch.randn(*shape))
# style convs and to_rgbs
for i in range(3, self.log_size + 1):
out_channels = channels[f"{2**i}"]
self.style_convs.append(
StyleConv(
in_channels,
out_channels,
kernel_size=3,
num_style_feat=num_style_feat,
demodulate=True,
sample_mode="upsample",
resample_kernel=resample_kernel,
)
)
self.style_convs.append(
StyleConv(
out_channels,
out_channels,
kernel_size=3,
num_style_feat=num_style_feat,
demodulate=True,
sample_mode=None,
resample_kernel=resample_kernel,
)
)
self.to_rgbs.append(
ToRGB(
out_channels,
num_style_feat,
upsample=True,
resample_kernel=resample_kernel,
)
)
in_channels = out_channels
def make_noise(self):
"""Make noise for noise injection."""
device = self.constant_input.weight.device
noises = [torch.randn(1, 1, 4, 4, device=device)]
for i in range(3, self.log_size + 1):
for _ in range(2):
noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
return noises
def get_latent(self, x):
return self.style_mlp(x)
def mean_latent(self, num_latent):
latent_in = torch.randn(
num_latent, self.num_style_feat, device=self.constant_input.weight.device
)
latent = self.style_mlp(latent_in).mean(0, keepdim=True)
return latent
def forward(
self,
styles,
input_is_latent=False,
noise=None,
randomize_noise=True,
truncation=1,
truncation_latent=None,
inject_index=None,
return_latents=False,
):
"""Forward function for StyleGAN2Generator.
Args:
styles (list[Tensor]): Sample codes of styles.
input_is_latent (bool): Whether input is latent style.
Default: False.
noise (Tensor | None): Input noise or None. Default: None.
randomize_noise (bool): Randomize noise, used when 'noise' is
False. Default: True.
truncation (float): TODO. Default: 1.
truncation_latent (Tensor | None): TODO. Default: None.
inject_index (int | None): The injection index for mixing noise.
Default: None.
return_latents (bool): Whether to return style latents.
Default: False.
"""
# style codes -> latents with Style MLP layer
if not input_is_latent:
styles = [self.style_mlp(s) for s in styles]
# noises
if noise is None:
if randomize_noise:
noise = [None] * self.num_layers # for each style conv layer
else: # use the stored noise
noise = [
getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
]
# style truncation
if truncation < 1:
style_truncation = []
for style in styles:
style_truncation.append(
truncation_latent + truncation * (style - truncation_latent)
)
styles = style_truncation
# get style latent with injection
if len(styles) == 1:
inject_index = self.num_latent
if styles[0].ndim < 3:
# repeat latent code for all the layers
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else: # used for encoder with different latent code for each layer
latent = styles[0]
elif len(styles) == 2: # mixing noises
if inject_index is None:
inject_index = random.randint(1, self.num_latent - 1)
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
latent2 = (
styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
)
latent = torch.cat([latent1, latent2], 1)
# main generation
out = self.constant_input(latent.shape[0])
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
skip = self.to_rgb1(out, latent[:, 1])
i = 1
for conv1, conv2, noise1, noise2, to_rgb in zip(
self.style_convs[::2],
self.style_convs[1::2],
noise[1::2],
noise[2::2],
self.to_rgbs,
):
out = conv1(out, latent[:, i], noise=noise1)
out = conv2(out, latent[:, i + 1], noise=noise2)
skip = to_rgb(out, latent[:, i + 2], skip)
i += 2
image = skip
if return_latents:
return image, latent
else:
return image, None
class ScaledLeakyReLU(nn.Module):
"""Scaled LeakyReLU.
Args:
negative_slope (float): Negative slope. Default: 0.2.
"""
def __init__(self, negative_slope=0.2):
super(ScaledLeakyReLU, self).__init__()
self.negative_slope = negative_slope
def forward(self, x):
out = F.leaky_relu(x, negative_slope=self.negative_slope)
return out * math.sqrt(2)
class EqualConv2d(nn.Module):
"""Equalized Linear as StyleGAN2.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
stride (int): Stride of the convolution. Default: 1
padding (int): Zero-padding added to both sides of the input.
Default: 0.
bias (bool): If ``True``, adds a learnable bias to the output.
Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
bias=True,
bias_init_val=0,
):
super(EqualConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
self.weight = nn.Parameter(
torch.randn(out_channels, in_channels, kernel_size, kernel_size)
)
if bias:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
else:
self.register_parameter("bias", None)
def forward(self, x):
out = F.conv2d(
x,
self.weight * self.scale,
bias=self.bias,
stride=self.stride,
padding=self.padding,
)
return out
def __repr__(self):
return (
f"{self.__class__.__name__}(in_channels={self.in_channels}, "
f"out_channels={self.out_channels}, "
f"kernel_size={self.kernel_size},"
f" stride={self.stride}, padding={self.padding}, "
f"bias={self.bias is not None})"
)
class ConvLayer(nn.Sequential):
"""Conv Layer used in StyleGAN2 Discriminator.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Kernel size.
downsample (bool): Whether downsample by a factor of 2.
Default: False.
resample_kernel (list[int]): A list indicating the 1D resample
kernel magnitude. A cross production will be applied to
extent 1D resample kernel to 2D resample kernel.
Default: (1, 3, 3, 1).
bias (bool): Whether with bias. Default: True.
activate (bool): Whether use activateion. Default: True.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
downsample=False,
resample_kernel=(1, 3, 3, 1),
bias=True,
activate=True,
):
layers = []
# downsample
if downsample:
layers.append(
UpFirDnSmooth(
resample_kernel,
upsample_factor=1,
downsample_factor=2,
kernel_size=kernel_size,
)
)
stride = 2
self.padding = 0
else:
stride = 1
self.padding = kernel_size // 2
# conv
layers.append(
EqualConv2d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=self.padding,
bias=bias and not activate,
)
)
# activation
if activate:
if bias:
layers.append(FusedLeakyReLU(out_channels))
else:
layers.append(ScaledLeakyReLU(0.2))
super(ConvLayer, self).__init__(*layers)
class ResBlock(nn.Module):
"""Residual block used in StyleGAN2 Discriminator.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
resample_kernel (list[int]): A list indicating the 1D resample
kernel magnitude. A cross production will be applied to
extent 1D resample kernel to 2D resample kernel.
Default: (1, 3, 3, 1).
"""
def __init__(self, in_channels, out_channels, resample_kernel=(1, 3, 3, 1)):
super(ResBlock, self).__init__()
self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
self.conv2 = ConvLayer(
in_channels,
out_channels,
3,
downsample=True,
resample_kernel=resample_kernel,
bias=True,
activate=True,
)
self.skip = ConvLayer(
in_channels,
out_channels,
1,
downsample=True,
resample_kernel=resample_kernel,
bias=False,
activate=False,
)
def forward(self, x):
out = self.conv1(x)
out = self.conv2(out)
skip = self.skip(x)
out = (out + skip) / math.sqrt(2)
return out

View File

@ -0,0 +1,709 @@
# pylint: skip-file
# type: ignore
import math
import random
import torch
from torch import nn
from torch.nn import functional as F
from .fused_act import FusedLeakyReLU, fused_leaky_relu
class NormStyleCode(nn.Module):
def forward(self, x):
"""Normalize the style codes.
Args:
x (Tensor): Style codes with shape (b, c).
Returns:
Tensor: Normalized tensor.
"""
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
class EqualLinear(nn.Module):
"""Equalized Linear as StyleGAN2.
Args:
in_channels (int): Size of each sample.
out_channels (int): Size of each output sample.
bias (bool): If set to ``False``, the layer will not learn an additive
bias. Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
lr_mul (float): Learning rate multiplier. Default: 1.
activation (None | str): The activation after ``linear`` operation.
Supported: 'fused_lrelu', None. Default: None.
"""
def __init__(
self,
in_channels,
out_channels,
bias=True,
bias_init_val=0,
lr_mul=1,
activation=None,
):
super(EqualLinear, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.lr_mul = lr_mul
self.activation = activation
if self.activation not in ["fused_lrelu", None]:
raise ValueError(
f"Wrong activation value in EqualLinear: {activation}"
"Supported ones are: ['fused_lrelu', None]."
)
self.scale = (1 / math.sqrt(in_channels)) * lr_mul
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
else:
self.register_parameter("bias", None)
def forward(self, x):
if self.bias is None:
bias = None
else:
bias = self.bias * self.lr_mul
if self.activation == "fused_lrelu":
out = F.linear(x, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(x, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f"{self.__class__.__name__}(in_channels={self.in_channels}, "
f"out_channels={self.out_channels}, bias={self.bias is not None})"
)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d used in StyleGAN2.
There is no bias in ModulatedConv2d.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether to demodulate in the conv layer.
Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
Default: None.
eps (float): A value added to the denominator for numerical stability.
Default: 1e-8.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
num_style_feat,
demodulate=True,
sample_mode=None,
eps=1e-8,
interpolation_mode="bilinear",
):
super(ModulatedConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.demodulate = demodulate
self.sample_mode = sample_mode
self.eps = eps
self.interpolation_mode = interpolation_mode
if self.interpolation_mode == "nearest":
self.align_corners = None
else:
self.align_corners = False
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
# modulation inside each modulated conv
self.modulation = EqualLinear(
num_style_feat,
in_channels,
bias=True,
bias_init_val=1,
lr_mul=1,
activation=None,
)
self.weight = nn.Parameter(
torch.randn(1, out_channels, in_channels, kernel_size, kernel_size)
)
self.padding = kernel_size // 2
def forward(self, x, style):
"""Forward function.
Args:
x (Tensor): Tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
Returns:
Tensor: Modulated tensor after convolution.
"""
b, c, h, w = x.shape # c = c_in
# weight modulation
style = self.modulation(style).view(b, 1, c, 1, 1)
# self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
weight = self.scale * self.weight * style # (b, c_out, c_in, k, k)
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
weight = weight.view(
b * self.out_channels, c, self.kernel_size, self.kernel_size
)
if self.sample_mode == "upsample":
x = F.interpolate(
x,
scale_factor=2,
mode=self.interpolation_mode,
align_corners=self.align_corners,
)
elif self.sample_mode == "downsample":
x = F.interpolate(
x,
scale_factor=0.5,
mode=self.interpolation_mode,
align_corners=self.align_corners,
)
b, c, h, w = x.shape
x = x.view(1, b * c, h, w)
# weight: (b*c_out, c_in, k, k), groups=b
out = F.conv2d(x, weight, padding=self.padding, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
return out
def __repr__(self):
return (
f"{self.__class__.__name__}(in_channels={self.in_channels}, "
f"out_channels={self.out_channels}, "
f"kernel_size={self.kernel_size}, "
f"demodulate={self.demodulate}, sample_mode={self.sample_mode})"
)
class StyleConv(nn.Module):
"""Style conv.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether demodulate in the conv layer. Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
Default: None.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
num_style_feat,
demodulate=True,
sample_mode=None,
interpolation_mode="bilinear",
):
super(StyleConv, self).__init__()
self.modulated_conv = ModulatedConv2d(
in_channels,
out_channels,
kernel_size,
num_style_feat,
demodulate=demodulate,
sample_mode=sample_mode,
interpolation_mode=interpolation_mode,
)
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
self.activate = FusedLeakyReLU(out_channels)
def forward(self, x, style, noise=None):
# modulate
out = self.modulated_conv(x, style)
# noise injection
if noise is None:
b, _, h, w = out.shape
noise = out.new_empty(b, 1, h, w).normal_()
out = out + self.weight * noise
# activation (with bias)
out = self.activate(out)
return out
class ToRGB(nn.Module):
"""To RGB from features.
Args:
in_channels (int): Channel number of input.
num_style_feat (int): Channel number of style features.
upsample (bool): Whether to upsample. Default: True.
"""
def __init__(
self, in_channels, num_style_feat, upsample=True, interpolation_mode="bilinear"
):
super(ToRGB, self).__init__()
self.upsample = upsample
self.interpolation_mode = interpolation_mode
if self.interpolation_mode == "nearest":
self.align_corners = None
else:
self.align_corners = False
self.modulated_conv = ModulatedConv2d(
in_channels,
3,
kernel_size=1,
num_style_feat=num_style_feat,
demodulate=False,
sample_mode=None,
interpolation_mode=interpolation_mode,
)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, x, style, skip=None):
"""Forward function.
Args:
x (Tensor): Feature tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
skip (Tensor): Base/skip tensor. Default: None.
Returns:
Tensor: RGB images.
"""
out = self.modulated_conv(x, style)
out = out + self.bias
if skip is not None:
if self.upsample:
skip = F.interpolate(
skip,
scale_factor=2,
mode=self.interpolation_mode,
align_corners=self.align_corners,
)
out = out + skip
return out
class ConstantInput(nn.Module):
"""Constant input.
Args:
num_channel (int): Channel number of constant input.
size (int): Spatial size of constant input.
"""
def __init__(self, num_channel, size):
super(ConstantInput, self).__init__()
self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
def forward(self, batch):
out = self.weight.repeat(batch, 1, 1, 1)
return out
class StyleGAN2GeneratorBilinear(nn.Module):
"""StyleGAN2 Generator.
Args:
out_size (int): The spatial size of outputs.
num_style_feat (int): Channel number of style features. Default: 512.
num_mlp (int): Layer number of MLP style layers. Default: 8.
channel_multiplier (int): Channel multiplier for large networks of
StyleGAN2. Default: 2.
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
narrow (float): Narrow ratio for channels. Default: 1.0.
"""
def __init__(
self,
out_size,
num_style_feat=512,
num_mlp=8,
channel_multiplier=2,
lr_mlp=0.01,
narrow=1,
interpolation_mode="bilinear",
):
super(StyleGAN2GeneratorBilinear, self).__init__()
# Style MLP layers
self.num_style_feat = num_style_feat
style_mlp_layers = [NormStyleCode()]
for i in range(num_mlp):
style_mlp_layers.append(
EqualLinear(
num_style_feat,
num_style_feat,
bias=True,
bias_init_val=0,
lr_mul=lr_mlp,
activation="fused_lrelu",
)
)
self.style_mlp = nn.Sequential(*style_mlp_layers)
channels = {
"4": int(512 * narrow),
"8": int(512 * narrow),
"16": int(512 * narrow),
"32": int(512 * narrow),
"64": int(256 * channel_multiplier * narrow),
"128": int(128 * channel_multiplier * narrow),
"256": int(64 * channel_multiplier * narrow),
"512": int(32 * channel_multiplier * narrow),
"1024": int(16 * channel_multiplier * narrow),
}
self.channels = channels
self.constant_input = ConstantInput(channels["4"], size=4)
self.style_conv1 = StyleConv(
channels["4"],
channels["4"],
kernel_size=3,
num_style_feat=num_style_feat,
demodulate=True,
sample_mode=None,
interpolation_mode=interpolation_mode,
)
self.to_rgb1 = ToRGB(
channels["4"],
num_style_feat,
upsample=False,
interpolation_mode=interpolation_mode,
)
self.log_size = int(math.log(out_size, 2))
self.num_layers = (self.log_size - 2) * 2 + 1
self.num_latent = self.log_size * 2 - 2
self.style_convs = nn.ModuleList()
self.to_rgbs = nn.ModuleList()
self.noises = nn.Module()
in_channels = channels["4"]
# noise
for layer_idx in range(self.num_layers):
resolution = 2 ** ((layer_idx + 5) // 2)
shape = [1, 1, resolution, resolution]
self.noises.register_buffer(f"noise{layer_idx}", torch.randn(*shape))
# style convs and to_rgbs
for i in range(3, self.log_size + 1):
out_channels = channels[f"{2**i}"]
self.style_convs.append(
StyleConv(
in_channels,
out_channels,
kernel_size=3,
num_style_feat=num_style_feat,
demodulate=True,
sample_mode="upsample",
interpolation_mode=interpolation_mode,
)
)
self.style_convs.append(
StyleConv(
out_channels,
out_channels,
kernel_size=3,
num_style_feat=num_style_feat,
demodulate=True,
sample_mode=None,
interpolation_mode=interpolation_mode,
)
)
self.to_rgbs.append(
ToRGB(
out_channels,
num_style_feat,
upsample=True,
interpolation_mode=interpolation_mode,
)
)
in_channels = out_channels
def make_noise(self):
"""Make noise for noise injection."""
device = self.constant_input.weight.device
noises = [torch.randn(1, 1, 4, 4, device=device)]
for i in range(3, self.log_size + 1):
for _ in range(2):
noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
return noises
def get_latent(self, x):
return self.style_mlp(x)
def mean_latent(self, num_latent):
latent_in = torch.randn(
num_latent, self.num_style_feat, device=self.constant_input.weight.device
)
latent = self.style_mlp(latent_in).mean(0, keepdim=True)
return latent
def forward(
self,
styles,
input_is_latent=False,
noise=None,
randomize_noise=True,
truncation=1,
truncation_latent=None,
inject_index=None,
return_latents=False,
):
"""Forward function for StyleGAN2Generator.
Args:
styles (list[Tensor]): Sample codes of styles.
input_is_latent (bool): Whether input is latent style.
Default: False.
noise (Tensor | None): Input noise or None. Default: None.
randomize_noise (bool): Randomize noise, used when 'noise' is
False. Default: True.
truncation (float): TODO. Default: 1.
truncation_latent (Tensor | None): TODO. Default: None.
inject_index (int | None): The injection index for mixing noise.
Default: None.
return_latents (bool): Whether to return style latents.
Default: False.
"""
# style codes -> latents with Style MLP layer
if not input_is_latent:
styles = [self.style_mlp(s) for s in styles]
# noises
if noise is None:
if randomize_noise:
noise = [None] * self.num_layers # for each style conv layer
else: # use the stored noise
noise = [
getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
]
# style truncation
if truncation < 1:
style_truncation = []
for style in styles:
style_truncation.append(
truncation_latent + truncation * (style - truncation_latent)
)
styles = style_truncation
# get style latent with injection
if len(styles) == 1:
inject_index = self.num_latent
if styles[0].ndim < 3:
# repeat latent code for all the layers
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else: # used for encoder with different latent code for each layer
latent = styles[0]
elif len(styles) == 2: # mixing noises
if inject_index is None:
inject_index = random.randint(1, self.num_latent - 1)
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
latent2 = (
styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
)
latent = torch.cat([latent1, latent2], 1)
# main generation
out = self.constant_input(latent.shape[0])
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
skip = self.to_rgb1(out, latent[:, 1])
i = 1
for conv1, conv2, noise1, noise2, to_rgb in zip(
self.style_convs[::2],
self.style_convs[1::2],
noise[1::2],
noise[2::2],
self.to_rgbs,
):
out = conv1(out, latent[:, i], noise=noise1)
out = conv2(out, latent[:, i + 1], noise=noise2)
skip = to_rgb(out, latent[:, i + 2], skip)
i += 2
image = skip
if return_latents:
return image, latent
else:
return image, None
class ScaledLeakyReLU(nn.Module):
"""Scaled LeakyReLU.
Args:
negative_slope (float): Negative slope. Default: 0.2.
"""
def __init__(self, negative_slope=0.2):
super(ScaledLeakyReLU, self).__init__()
self.negative_slope = negative_slope
def forward(self, x):
out = F.leaky_relu(x, negative_slope=self.negative_slope)
return out * math.sqrt(2)
class EqualConv2d(nn.Module):
"""Equalized Linear as StyleGAN2.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
stride (int): Stride of the convolution. Default: 1
padding (int): Zero-padding added to both sides of the input.
Default: 0.
bias (bool): If ``True``, adds a learnable bias to the output.
Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
bias=True,
bias_init_val=0,
):
super(EqualConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
self.weight = nn.Parameter(
torch.randn(out_channels, in_channels, kernel_size, kernel_size)
)
if bias:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
else:
self.register_parameter("bias", None)
def forward(self, x):
out = F.conv2d(
x,
self.weight * self.scale,
bias=self.bias,
stride=self.stride,
padding=self.padding,
)
return out
def __repr__(self):
return (
f"{self.__class__.__name__}(in_channels={self.in_channels}, "
f"out_channels={self.out_channels}, "
f"kernel_size={self.kernel_size},"
f" stride={self.stride}, padding={self.padding}, "
f"bias={self.bias is not None})"
)
class ConvLayer(nn.Sequential):
"""Conv Layer used in StyleGAN2 Discriminator.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Kernel size.
downsample (bool): Whether downsample by a factor of 2.
Default: False.
bias (bool): Whether with bias. Default: True.
activate (bool): Whether use activateion. Default: True.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
downsample=False,
bias=True,
activate=True,
interpolation_mode="bilinear",
):
layers = []
self.interpolation_mode = interpolation_mode
# downsample
if downsample:
if self.interpolation_mode == "nearest":
self.align_corners = None
else:
self.align_corners = False
layers.append(
torch.nn.Upsample(
scale_factor=0.5,
mode=interpolation_mode,
align_corners=self.align_corners,
)
)
stride = 1
self.padding = kernel_size // 2
# conv
layers.append(
EqualConv2d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=self.padding,
bias=bias and not activate,
)
)
# activation
if activate:
if bias:
layers.append(FusedLeakyReLU(out_channels))
else:
layers.append(ScaledLeakyReLU(0.2))
super(ConvLayer, self).__init__(*layers)
class ResBlock(nn.Module):
"""Residual block used in StyleGAN2 Discriminator.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
"""
def __init__(self, in_channels, out_channels, interpolation_mode="bilinear"):
super(ResBlock, self).__init__()
self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
self.conv2 = ConvLayer(
in_channels,
out_channels,
3,
downsample=True,
interpolation_mode=interpolation_mode,
bias=True,
activate=True,
)
self.skip = ConvLayer(
in_channels,
out_channels,
1,
downsample=True,
interpolation_mode=interpolation_mode,
bias=False,
activate=False,
)
def forward(self, x):
out = self.conv1(x)
out = self.conv2(out)
skip = self.skip(x)
out = (out + skip) / math.sqrt(2)
return out

View File

@ -0,0 +1,453 @@
# pylint: skip-file
# type: ignore
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import init
from torch.nn.modules.batchnorm import _BatchNorm
@torch.no_grad()
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
"""Initialize network weights.
Args:
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
scale (float): Scale initialized weights, especially for residual
blocks. Default: 1.
bias_fill (float): The value to fill bias. Default: 0
kwargs (dict): Other arguments for initialization function.
"""
if not isinstance(module_list, list):
module_list = [module_list]
for module in module_list:
for m in module.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, _BatchNorm):
init.constant_(m.weight, 1)
if m.bias is not None:
m.bias.data.fill_(bias_fill)
class NormStyleCode(nn.Module):
def forward(self, x):
"""Normalize the style codes.
Args:
x (Tensor): Style codes with shape (b, c).
Returns:
Tensor: Normalized tensor.
"""
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d used in StyleGAN2.
There is no bias in ModulatedConv2d.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether to demodulate in the conv layer. Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
eps (float): A value added to the denominator for numerical stability. Default: 1e-8.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
num_style_feat,
demodulate=True,
sample_mode=None,
eps=1e-8,
):
super(ModulatedConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.demodulate = demodulate
self.sample_mode = sample_mode
self.eps = eps
# modulation inside each modulated conv
self.modulation = nn.Linear(num_style_feat, in_channels, bias=True)
# initialization
default_init_weights(
self.modulation,
scale=1,
bias_fill=1,
a=0,
mode="fan_in",
nonlinearity="linear",
)
self.weight = nn.Parameter(
torch.randn(1, out_channels, in_channels, kernel_size, kernel_size)
/ math.sqrt(in_channels * kernel_size**2)
)
self.padding = kernel_size // 2
def forward(self, x, style):
"""Forward function.
Args:
x (Tensor): Tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
Returns:
Tensor: Modulated tensor after convolution.
"""
b, c, h, w = x.shape # c = c_in
# weight modulation
style = self.modulation(style).view(b, 1, c, 1, 1)
# self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
weight = self.weight * style # (b, c_out, c_in, k, k)
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
weight = weight.view(
b * self.out_channels, c, self.kernel_size, self.kernel_size
)
# upsample or downsample if necessary
if self.sample_mode == "upsample":
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False)
elif self.sample_mode == "downsample":
x = F.interpolate(x, scale_factor=0.5, mode="bilinear", align_corners=False)
b, c, h, w = x.shape
x = x.view(1, b * c, h, w)
# weight: (b*c_out, c_in, k, k), groups=b
out = F.conv2d(x, weight, padding=self.padding, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
return out
def __repr__(self):
return (
f"{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, "
f"kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})"
)
class StyleConv(nn.Module):
"""Style conv used in StyleGAN2.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether demodulate in the conv layer. Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
num_style_feat,
demodulate=True,
sample_mode=None,
):
super(StyleConv, self).__init__()
self.modulated_conv = ModulatedConv2d(
in_channels,
out_channels,
kernel_size,
num_style_feat,
demodulate=demodulate,
sample_mode=sample_mode,
)
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x, style, noise=None):
# modulate
out = self.modulated_conv(x, style) * 2**0.5 # for conversion
# noise injection
if noise is None:
b, _, h, w = out.shape
noise = out.new_empty(b, 1, h, w).normal_()
out = out + self.weight * noise
# add bias
out = out + self.bias
# activation
out = self.activate(out)
return out
class ToRGB(nn.Module):
"""To RGB (image space) from features.
Args:
in_channels (int): Channel number of input.
num_style_feat (int): Channel number of style features.
upsample (bool): Whether to upsample. Default: True.
"""
def __init__(self, in_channels, num_style_feat, upsample=True):
super(ToRGB, self).__init__()
self.upsample = upsample
self.modulated_conv = ModulatedConv2d(
in_channels,
3,
kernel_size=1,
num_style_feat=num_style_feat,
demodulate=False,
sample_mode=None,
)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, x, style, skip=None):
"""Forward function.
Args:
x (Tensor): Feature tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
skip (Tensor): Base/skip tensor. Default: None.
Returns:
Tensor: RGB images.
"""
out = self.modulated_conv(x, style)
out = out + self.bias
if skip is not None:
if self.upsample:
skip = F.interpolate(
skip, scale_factor=2, mode="bilinear", align_corners=False
)
out = out + skip
return out
class ConstantInput(nn.Module):
"""Constant input.
Args:
num_channel (int): Channel number of constant input.
size (int): Spatial size of constant input.
"""
def __init__(self, num_channel, size):
super(ConstantInput, self).__init__()
self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
def forward(self, batch):
out = self.weight.repeat(batch, 1, 1, 1)
return out
class StyleGAN2GeneratorClean(nn.Module):
"""Clean version of StyleGAN2 Generator.
Args:
out_size (int): The spatial size of outputs.
num_style_feat (int): Channel number of style features. Default: 512.
num_mlp (int): Layer number of MLP style layers. Default: 8.
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
narrow (float): Narrow ratio for channels. Default: 1.0.
"""
def __init__(
self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1
):
super(StyleGAN2GeneratorClean, self).__init__()
# Style MLP layers
self.num_style_feat = num_style_feat
style_mlp_layers = [NormStyleCode()]
for i in range(num_mlp):
style_mlp_layers.extend(
[
nn.Linear(num_style_feat, num_style_feat, bias=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
]
)
self.style_mlp = nn.Sequential(*style_mlp_layers)
# initialization
default_init_weights(
self.style_mlp,
scale=1,
bias_fill=0,
a=0.2,
mode="fan_in",
nonlinearity="leaky_relu",
)
# channel list
channels = {
"4": int(512 * narrow),
"8": int(512 * narrow),
"16": int(512 * narrow),
"32": int(512 * narrow),
"64": int(256 * channel_multiplier * narrow),
"128": int(128 * channel_multiplier * narrow),
"256": int(64 * channel_multiplier * narrow),
"512": int(32 * channel_multiplier * narrow),
"1024": int(16 * channel_multiplier * narrow),
}
self.channels = channels
self.constant_input = ConstantInput(channels["4"], size=4)
self.style_conv1 = StyleConv(
channels["4"],
channels["4"],
kernel_size=3,
num_style_feat=num_style_feat,
demodulate=True,
sample_mode=None,
)
self.to_rgb1 = ToRGB(channels["4"], num_style_feat, upsample=False)
self.log_size = int(math.log(out_size, 2))
self.num_layers = (self.log_size - 2) * 2 + 1
self.num_latent = self.log_size * 2 - 2
self.style_convs = nn.ModuleList()
self.to_rgbs = nn.ModuleList()
self.noises = nn.Module()
in_channels = channels["4"]
# noise
for layer_idx in range(self.num_layers):
resolution = 2 ** ((layer_idx + 5) // 2)
shape = [1, 1, resolution, resolution]
self.noises.register_buffer(f"noise{layer_idx}", torch.randn(*shape))
# style convs and to_rgbs
for i in range(3, self.log_size + 1):
out_channels = channels[f"{2**i}"]
self.style_convs.append(
StyleConv(
in_channels,
out_channels,
kernel_size=3,
num_style_feat=num_style_feat,
demodulate=True,
sample_mode="upsample",
)
)
self.style_convs.append(
StyleConv(
out_channels,
out_channels,
kernel_size=3,
num_style_feat=num_style_feat,
demodulate=True,
sample_mode=None,
)
)
self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True))
in_channels = out_channels
def make_noise(self):
"""Make noise for noise injection."""
device = self.constant_input.weight.device
noises = [torch.randn(1, 1, 4, 4, device=device)]
for i in range(3, self.log_size + 1):
for _ in range(2):
noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
return noises
def get_latent(self, x):
return self.style_mlp(x)
def mean_latent(self, num_latent):
latent_in = torch.randn(
num_latent, self.num_style_feat, device=self.constant_input.weight.device
)
latent = self.style_mlp(latent_in).mean(0, keepdim=True)
return latent
def forward(
self,
styles,
input_is_latent=False,
noise=None,
randomize_noise=True,
truncation=1,
truncation_latent=None,
inject_index=None,
return_latents=False,
):
"""Forward function for StyleGAN2GeneratorClean.
Args:
styles (list[Tensor]): Sample codes of styles.
input_is_latent (bool): Whether input is latent style. Default: False.
noise (Tensor | None): Input noise or None. Default: None.
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
truncation (float): The truncation ratio. Default: 1.
truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
inject_index (int | None): The injection index for mixing noise. Default: None.
return_latents (bool): Whether to return style latents. Default: False.
"""
# style codes -> latents with Style MLP layer
if not input_is_latent:
styles = [self.style_mlp(s) for s in styles]
# noises
if noise is None:
if randomize_noise:
noise = [None] * self.num_layers # for each style conv layer
else: # use the stored noise
noise = [
getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
]
# style truncation
if truncation < 1:
style_truncation = []
for style in styles:
style_truncation.append(
truncation_latent + truncation * (style - truncation_latent)
)
styles = style_truncation
# get style latents with injection
if len(styles) == 1:
inject_index = self.num_latent
if styles[0].ndim < 3:
# repeat latent code for all the layers
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else: # used for encoder with different latent code for each layer
latent = styles[0]
elif len(styles) == 2: # mixing noises
if inject_index is None:
inject_index = random.randint(1, self.num_latent - 1)
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
latent2 = (
styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
)
latent = torch.cat([latent1, latent2], 1)
# main generation
out = self.constant_input(latent.shape[0])
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
skip = self.to_rgb1(out, latent[:, 1])
i = 1
for conv1, conv2, noise1, noise2, to_rgb in zip(
self.style_convs[::2],
self.style_convs[1::2],
noise[1::2],
noise[2::2],
self.to_rgbs,
):
out = conv1(out, latent[:, i], noise=noise1)
out = conv2(out, latent[:, i + 1], noise=noise2)
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
i += 2
image = skip
if return_latents:
return image, latent
else:
return image, None

View File

@ -0,0 +1,194 @@
# pylint: skip-file
# type: ignore
# modify from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d.py # noqa:E501
import os
import torch
from torch.autograd import Function
from torch.nn import functional as F
upfirdn2d_ext = None
class UpFirDn2dBackward(Function):
@staticmethod
def forward(
ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size
):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_ext.upfirdn2d(
grad_output,
grad_kernel,
down_x,
down_y,
up_x,
up_y,
g_pad_x0,
g_pad_x1,
g_pad_y0,
g_pad_y1,
)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
(kernel,) = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
gradgrad_out = upfirdn2d_ext.upfirdn2d(
gradgrad_input,
kernel,
ctx.up_x,
ctx.up_y,
ctx.down_x,
ctx.down_y,
ctx.pad_x0,
ctx.pad_x1,
ctx.pad_y0,
ctx.pad_y1,
)
# gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0],
# ctx.out_size[1], ctx.in_size[3])
gradgrad_out = gradgrad_out.view(
ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]
)
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = (out_h, out_w)
ctx.up = (up_x, up_y)
ctx.down = (down_x, down_y)
ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
out = upfirdn2d_ext.upfirdn2d(
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
)
# out = out.view(major, out_h, out_w, minor)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(
grad_output,
kernel,
grad_kernel,
ctx.up,
ctx.down,
ctx.pad,
ctx.g_pad,
ctx.in_size,
ctx.out_size,
)
return grad_input, None, None, None, None
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
if input.device.type == "cpu":
out = upfirdn2d_native(
input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]
)
else:
out = UpFirDn2d.apply(
input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
)
return out
def upfirdn2d_native(
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
)
out = out[
:,
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
:,
]
out = out.permute(0, 3, 1, 2)
out = out.reshape(
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
)
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(
-1,
minor,
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)

View File

@ -0,0 +1,698 @@
"""Code used for this implementation of the MAT helper utils is modified from
lama-cleaner, copyright of Sanster: https://github.com/fenglinglwb/MAT"""
import collections
from itertools import repeat
from typing import Any
import numpy as np
import torch
from torch import conv2d, conv_transpose2d
def normalize_2nd_moment(x, dim=1, eps=1e-8):
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()
class EasyDict(dict):
"""Convenience class that behaves like a dict but allows access with the attribute syntax."""
def __getattr__(self, name: str) -> Any:
try:
return self[name]
except KeyError:
raise AttributeError(name)
def __setattr__(self, name: str, value: Any) -> None:
self[name] = value
def __delattr__(self, name: str) -> None:
del self[name]
activation_funcs = {
"linear": EasyDict(
func=lambda x, **_: x,
def_alpha=0,
def_gain=1,
cuda_idx=1,
ref="",
has_2nd_grad=False,
),
"relu": EasyDict(
func=lambda x, **_: torch.nn.functional.relu(x),
def_alpha=0,
def_gain=np.sqrt(2),
cuda_idx=2,
ref="y",
has_2nd_grad=False,
),
"lrelu": EasyDict(
func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha),
def_alpha=0.2,
def_gain=np.sqrt(2),
cuda_idx=3,
ref="y",
has_2nd_grad=False,
),
"tanh": EasyDict(
func=lambda x, **_: torch.tanh(x),
def_alpha=0,
def_gain=1,
cuda_idx=4,
ref="y",
has_2nd_grad=True,
),
"sigmoid": EasyDict(
func=lambda x, **_: torch.sigmoid(x),
def_alpha=0,
def_gain=1,
cuda_idx=5,
ref="y",
has_2nd_grad=True,
),
"elu": EasyDict(
func=lambda x, **_: torch.nn.functional.elu(x),
def_alpha=0,
def_gain=1,
cuda_idx=6,
ref="y",
has_2nd_grad=True,
),
"selu": EasyDict(
func=lambda x, **_: torch.nn.functional.selu(x),
def_alpha=0,
def_gain=1,
cuda_idx=7,
ref="y",
has_2nd_grad=True,
),
"softplus": EasyDict(
func=lambda x, **_: torch.nn.functional.softplus(x),
def_alpha=0,
def_gain=1,
cuda_idx=8,
ref="y",
has_2nd_grad=True,
),
"swish": EasyDict(
func=lambda x, **_: torch.sigmoid(x) * x,
def_alpha=0,
def_gain=np.sqrt(2),
cuda_idx=9,
ref="x",
has_2nd_grad=True,
),
}
def _bias_act_ref(x, b=None, dim=1, act="linear", alpha=None, gain=None, clamp=None):
"""Slow reference implementation of `bias_act()` using standard TensorFlow ops."""
assert isinstance(x, torch.Tensor)
assert clamp is None or clamp >= 0
spec = activation_funcs[act]
alpha = float(alpha if alpha is not None else spec.def_alpha)
gain = float(gain if gain is not None else spec.def_gain)
clamp = float(clamp if clamp is not None else -1)
# Add bias.
if b is not None:
assert isinstance(b, torch.Tensor) and b.ndim == 1
assert 0 <= dim < x.ndim
assert b.shape[0] == x.shape[dim]
x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)]).to(x.device)
# Evaluate activation function.
alpha = float(alpha)
x = spec.func(x, alpha=alpha)
# Scale by gain.
gain = float(gain)
if gain != 1:
x = x * gain
# Clamp.
if clamp >= 0:
x = x.clamp(-clamp, clamp) # pylint: disable=invalid-unary-operand-type
return x
def bias_act(
x, b=None, dim=1, act="linear", alpha=None, gain=None, clamp=None, impl="ref"
):
r"""Fused bias and activation function.
Adds bias `b` to activation tensor `x`, evaluates activation function `act`,
and scales the result by `gain`. Each of the steps is optional. In most cases,
the fused op is considerably more efficient than performing the same calculation
using standard PyTorch ops. It supports first and second order gradients,
but not third order gradients.
Args:
x: Input activation tensor. Can be of any shape.
b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type
as `x`. The shape must be known, and it must match the dimension of `x`
corresponding to `dim`.
dim: The dimension in `x` corresponding to the elements of `b`.
The value of `dim` is ignored if `b` is not specified.
act: Name of the activation function to evaluate, or `"linear"` to disable.
Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc.
See `activation_funcs` for a full list. `None` is not allowed.
alpha: Shape parameter for the activation function, or `None` to use the default.
gain: Scaling factor for the output tensor, or `None` to use default.
See `activation_funcs` for the default scaling of each activation function.
If unsure, consider specifying 1.
clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable
the clamping (default).
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
Returns:
Tensor of the same shape and datatype as `x`.
"""
assert isinstance(x, torch.Tensor)
assert impl in ["ref", "cuda"]
return _bias_act_ref(
x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp
)
def setup_filter(
f,
device=torch.device("cpu"),
normalize=True,
flip_filter=False,
gain=1,
separable=None,
):
r"""Convenience function to setup 2D FIR filter for `upfirdn2d()`.
Args:
f: Torch tensor, numpy array, or python list of the shape
`[filter_height, filter_width]` (non-separable),
`[filter_taps]` (separable),
`[]` (impulse), or
`None` (identity).
device: Result device (default: cpu).
normalize: Normalize the filter so that it retains the magnitude
for constant input signal (DC)? (default: True).
flip_filter: Flip the filter? (default: False).
gain: Overall scaling factor for signal magnitude (default: 1).
separable: Return a separable filter? (default: select automatically).
Returns:
Float32 tensor of the shape
`[filter_height, filter_width]` (non-separable) or
`[filter_taps]` (separable).
"""
# Validate.
if f is None:
f = 1
f = torch.as_tensor(f, dtype=torch.float32)
assert f.ndim in [0, 1, 2]
assert f.numel() > 0
if f.ndim == 0:
f = f[np.newaxis]
# Separable?
if separable is None:
separable = f.ndim == 1 and f.numel() >= 8
if f.ndim == 1 and not separable:
f = f.ger(f)
assert f.ndim == (1 if separable else 2)
# Apply normalize, flip, gain, and device.
if normalize:
f /= f.sum()
if flip_filter:
f = f.flip(list(range(f.ndim)))
f = f * (gain ** (f.ndim / 2))
f = f.to(device=device)
return f
def _get_filter_size(f):
if f is None:
return 1, 1
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
fw = f.shape[-1]
fh = f.shape[0]
fw = int(fw)
fh = int(fh)
assert fw >= 1 and fh >= 1
return fw, fh
def _get_weight_shape(w):
shape = [int(sz) for sz in w.shape]
return shape
def _parse_scaling(scaling):
if isinstance(scaling, int):
scaling = [scaling, scaling]
assert isinstance(scaling, (list, tuple))
assert all(isinstance(x, int) for x in scaling)
sx, sy = scaling
assert sx >= 1 and sy >= 1
return sx, sy
def _parse_padding(padding):
if isinstance(padding, int):
padding = [padding, padding]
assert isinstance(padding, (list, tuple))
assert all(isinstance(x, int) for x in padding)
if len(padding) == 2:
padx, pady = padding
padding = [padx, padx, pady, pady]
padx0, padx1, pady0, pady1 = padding
return padx0, padx1, pady0, pady1
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable):
return x
return tuple(repeat(x, n))
return parse
to_2tuple = _ntuple(2)
def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
"""Slow reference implementation of `upfirdn2d()` using standard PyTorch ops."""
# Validate arguments.
assert isinstance(x, torch.Tensor) and x.ndim == 4
if f is None:
f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
assert f.dtype == torch.float32 and not f.requires_grad
batch_size, num_channels, in_height, in_width = x.shape
# upx, upy = _parse_scaling(up)
# downx, downy = _parse_scaling(down)
upx, upy = up, up
downx, downy = down, down
# padx0, padx1, pady0, pady1 = _parse_padding(padding)
padx0, padx1, pady0, pady1 = padding[0], padding[1], padding[2], padding[3]
# Upsample by inserting zeros.
x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1])
x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1])
x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx])
# Pad or crop.
x = torch.nn.functional.pad(
x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)]
)
x = x[
:,
:,
max(-pady0, 0) : x.shape[2] - max(-pady1, 0),
max(-padx0, 0) : x.shape[3] - max(-padx1, 0),
]
# Setup filter.
f = f * (gain ** (f.ndim / 2))
f = f.to(x.dtype)
if not flip_filter:
f = f.flip(list(range(f.ndim)))
# Convolve with the filter.
f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim)
if f.ndim == 4:
x = conv2d(input=x, weight=f, groups=num_channels)
else:
x = conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels)
x = conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels)
# Downsample by throwing away pixels.
x = x[:, :, ::downy, ::downx]
return x
def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl="cuda"):
r"""Pad, upsample, filter, and downsample a batch of 2D images.
Performs the following sequence of operations for each channel:
1. Upsample the image by inserting N-1 zeros after each pixel (`up`).
2. Pad the image with the specified number of zeros on each side (`padding`).
Negative padding corresponds to cropping the image.
3. Convolve the image with the specified 2D FIR filter (`f`), shrinking it
so that the footprint of all output pixels lies within the input image.
4. Downsample the image by keeping every Nth pixel (`down`).
This sequence of operations bears close resemblance to scipy.signal.upfirdn().
The fused op is considerably more efficient than performing the same calculation
using standard PyTorch ops. It supports gradients of arbitrary order.
Args:
x: Float32/float64/float16 input tensor of the shape
`[batch_size, num_channels, in_height, in_width]`.
f: Float32 FIR filter of the shape
`[filter_height, filter_width]` (non-separable),
`[filter_taps]` (separable), or
`None` (identity).
up: Integer upsampling factor. Can be a single int or a list/tuple
`[x, y]` (default: 1).
down: Integer downsampling factor. Can be a single int or a list/tuple
`[x, y]` (default: 1).
padding: Padding with respect to the upsampled image. Can be a single number
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
(default: 0).
flip_filter: False = convolution, True = correlation (default: False).
gain: Overall scaling factor for signal magnitude (default: 1).
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
Returns:
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
"""
# assert isinstance(x, torch.Tensor)
# assert impl in ['ref', 'cuda']
return _upfirdn2d_ref(
x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain
)
def upsample2d(x, f, up=2, padding=0, flip_filter=False, gain=1, impl="cuda"):
r"""Upsample a batch of 2D images using the given 2D FIR filter.
By default, the result is padded so that its shape is a multiple of the input.
User-specified padding is applied on top of that, with negative values
indicating cropping. Pixels outside the image are assumed to be zero.
Args:
x: Float32/float64/float16 input tensor of the shape
`[batch_size, num_channels, in_height, in_width]`.
f: Float32 FIR filter of the shape
`[filter_height, filter_width]` (non-separable),
`[filter_taps]` (separable), or
`None` (identity).
up: Integer upsampling factor. Can be a single int or a list/tuple
`[x, y]` (default: 1).
padding: Padding with respect to the output. Can be a single number or a
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
(default: 0).
flip_filter: False = convolution, True = correlation (default: False).
gain: Overall scaling factor for signal magnitude (default: 1).
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
Returns:
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
"""
upx, upy = _parse_scaling(up)
# upx, upy = up, up
padx0, padx1, pady0, pady1 = _parse_padding(padding)
# padx0, padx1, pady0, pady1 = padding, padding, padding, padding
fw, fh = _get_filter_size(f)
p = [
padx0 + (fw + upx - 1) // 2,
padx1 + (fw - upx) // 2,
pady0 + (fh + upy - 1) // 2,
pady1 + (fh - upy) // 2,
]
return upfirdn2d(
x,
f,
up=up,
padding=p,
flip_filter=flip_filter,
gain=gain * upx * upy,
impl=impl,
)
class FullyConnectedLayer(torch.nn.Module):
def __init__(
self,
in_features, # Number of input features.
out_features, # Number of output features.
bias=True, # Apply additive bias before the activation function?
activation="linear", # Activation function: 'relu', 'lrelu', etc.
lr_multiplier=1, # Learning rate multiplier.
bias_init=0, # Initial value for the additive bias.
):
super().__init__()
self.weight = torch.nn.Parameter(
torch.randn([out_features, in_features]) / lr_multiplier
)
self.bias = (
torch.nn.Parameter(torch.full([out_features], np.float32(bias_init)))
if bias
else None
)
self.activation = activation
self.weight_gain = lr_multiplier / np.sqrt(in_features)
self.bias_gain = lr_multiplier
def forward(self, x):
w = self.weight * self.weight_gain
b = self.bias
if b is not None and self.bias_gain != 1:
b = b * self.bias_gain
if self.activation == "linear" and b is not None:
# out = torch.addmm(b.unsqueeze(0), x, w.t())
x = x.matmul(w.t().to(x.device))
out = x + b.reshape(
[-1 if i == x.ndim - 1 else 1 for i in range(x.ndim)]
).to(x.device)
else:
x = x.matmul(w.t().to(x.device))
out = bias_act(x, b, act=self.activation, dim=x.ndim - 1).to(x.device)
return out
def _conv2d_wrapper(
x, w, stride=1, padding=0, groups=1, transpose=False, flip_weight=True
):
"""Wrapper for the underlying `conv2d()` and `conv_transpose2d()` implementations."""
out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w)
# Flip weight if requested.
if (
not flip_weight
): # conv2d() actually performs correlation (flip_weight=True) not convolution (flip_weight=False).
w = w.flip([2, 3])
# Workaround performance pitfall in cuDNN 8.0.5, triggered when using
# 1x1 kernel + memory_format=channels_last + less than 64 channels.
if (
kw == 1
and kh == 1
and stride == 1
and padding in [0, [0, 0], (0, 0)]
and not transpose
):
if x.stride()[1] == 1 and min(out_channels, in_channels_per_group) < 64:
if out_channels <= 4 and groups == 1:
in_shape = x.shape
x = w.squeeze(3).squeeze(2) @ x.reshape(
[in_shape[0], in_channels_per_group, -1]
)
x = x.reshape([in_shape[0], out_channels, in_shape[2], in_shape[3]])
else:
x = x.to(memory_format=torch.contiguous_format)
w = w.to(memory_format=torch.contiguous_format)
x = conv2d(x, w, groups=groups)
return x.to(memory_format=torch.channels_last)
# Otherwise => execute using conv2d_gradfix.
op = conv_transpose2d if transpose else conv2d
return op(x, w, stride=stride, padding=padding, groups=groups)
def conv2d_resample(
x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight=True, flip_filter=False
):
r"""2D convolution with optional up/downsampling.
Padding is performed only once at the beginning, not between the operations.
Args:
x: Input tensor of shape
`[batch_size, in_channels, in_height, in_width]`.
w: Weight tensor of shape
`[out_channels, in_channels//groups, kernel_height, kernel_width]`.
f: Low-pass filter for up/downsampling. Must be prepared beforehand by
calling setup_filter(). None = identity (default).
up: Integer upsampling factor (default: 1).
down: Integer downsampling factor (default: 1).
padding: Padding with respect to the upsampled image. Can be a single number
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
(default: 0).
groups: Split input channels into N groups (default: 1).
flip_weight: False = convolution, True = correlation (default: True).
flip_filter: False = convolution, True = correlation (default: False).
Returns:
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
"""
# Validate arguments.
assert isinstance(x, torch.Tensor) and (x.ndim == 4)
assert isinstance(w, torch.Tensor) and (w.ndim == 4) and (w.dtype == x.dtype)
assert f is None or (
isinstance(f, torch.Tensor) and f.ndim in [1, 2] and f.dtype == torch.float32
)
assert isinstance(up, int) and (up >= 1)
assert isinstance(down, int) and (down >= 1)
# assert isinstance(groups, int) and (groups >= 1), f"!!!!!! groups: {groups} isinstance(groups, int) {isinstance(groups, int)} {type(groups)}"
out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w)
fw, fh = _get_filter_size(f)
# px0, px1, py0, py1 = _parse_padding(padding)
px0, px1, py0, py1 = padding, padding, padding, padding
# Adjust padding to account for up/downsampling.
if up > 1:
px0 += (fw + up - 1) // 2
px1 += (fw - up) // 2
py0 += (fh + up - 1) // 2
py1 += (fh - up) // 2
if down > 1:
px0 += (fw - down + 1) // 2
px1 += (fw - down) // 2
py0 += (fh - down + 1) // 2
py1 += (fh - down) // 2
# Fast path: 1x1 convolution with downsampling only => downsample first, then convolve.
if kw == 1 and kh == 1 and (down > 1 and up == 1):
x = upfirdn2d(
x=x, f=f, down=down, padding=[px0, px1, py0, py1], flip_filter=flip_filter
)
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
return x
# Fast path: 1x1 convolution with upsampling only => convolve first, then upsample.
if kw == 1 and kh == 1 and (up > 1 and down == 1):
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
x = upfirdn2d(
x=x,
f=f,
up=up,
padding=[px0, px1, py0, py1],
gain=up**2,
flip_filter=flip_filter,
)
return x
# Fast path: downsampling only => use strided convolution.
if down > 1 and up == 1:
x = upfirdn2d(x=x, f=f, padding=[px0, px1, py0, py1], flip_filter=flip_filter)
x = _conv2d_wrapper(
x=x, w=w, stride=down, groups=groups, flip_weight=flip_weight
)
return x
# Fast path: upsampling with optional downsampling => use transpose strided convolution.
if up > 1:
if groups == 1:
w = w.transpose(0, 1)
else:
w = w.reshape(groups, out_channels // groups, in_channels_per_group, kh, kw)
w = w.transpose(1, 2)
w = w.reshape(
groups * in_channels_per_group, out_channels // groups, kh, kw
)
px0 -= kw - 1
px1 -= kw - up
py0 -= kh - 1
py1 -= kh - up
pxt = max(min(-px0, -px1), 0)
pyt = max(min(-py0, -py1), 0)
x = _conv2d_wrapper(
x=x,
w=w,
stride=up,
padding=[pyt, pxt],
groups=groups,
transpose=True,
flip_weight=(not flip_weight),
)
x = upfirdn2d(
x=x,
f=f,
padding=[px0 + pxt, px1 + pxt, py0 + pyt, py1 + pyt],
gain=up**2,
flip_filter=flip_filter,
)
if down > 1:
x = upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter)
return x
# Fast path: no up/downsampling, padding supported by the underlying implementation => use plain conv2d.
if up == 1 and down == 1:
if px0 == px1 and py0 == py1 and px0 >= 0 and py0 >= 0:
return _conv2d_wrapper(
x=x, w=w, padding=[py0, px0], groups=groups, flip_weight=flip_weight
)
# Fallback: Generic reference implementation.
x = upfirdn2d(
x=x,
f=(f if up > 1 else None),
up=up,
padding=[px0, px1, py0, py1],
gain=up**2,
flip_filter=flip_filter,
)
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
if down > 1:
x = upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter)
return x
class Conv2dLayer(torch.nn.Module):
def __init__(
self,
in_channels, # Number of input channels.
out_channels, # Number of output channels.
kernel_size, # Width and height of the convolution kernel.
bias=True, # Apply additive bias before the activation function?
activation="linear", # Activation function: 'relu', 'lrelu', etc.
up=1, # Integer upsampling factor.
down=1, # Integer downsampling factor.
resample_filter=[
1,
3,
3,
1,
], # Low-pass filter to apply when resampling activations.
conv_clamp=None, # Clamp the output to +-X, None = disable clamping.
channels_last=False, # Expect the input to have memory_format=channels_last?
trainable=True, # Update the weights of this layer during training?
):
super().__init__()
self.activation = activation
self.up = up
self.down = down
self.register_buffer("resample_filter", setup_filter(resample_filter))
self.conv_clamp = conv_clamp
self.padding = kernel_size // 2
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2))
self.act_gain = activation_funcs[activation].def_gain
memory_format = (
torch.channels_last if channels_last else torch.contiguous_format
)
weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(
memory_format=memory_format
)
bias = torch.zeros([out_channels]) if bias else None
if trainable:
self.weight = torch.nn.Parameter(weight)
self.bias = torch.nn.Parameter(bias) if bias is not None else None
else:
self.register_buffer("weight", weight)
if bias is not None:
self.register_buffer("bias", bias)
else:
self.bias = None
def forward(self, x, gain=1):
w = self.weight * self.weight_gain
x = conv2d_resample(
x=x,
w=w,
f=self.resample_filter,
up=self.up,
down=self.down,
padding=self.padding,
)
act_gain = self.act_gain * gain
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
out = bias_act(
x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp
)
return out

View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2019 Ross Wightman
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,223 @@
""" DropBlock, DropPath
PyTorch implementations of DropBlock and DropPath (Stochastic Depth) regularization layers.
Papers:
DropBlock: A regularization method for convolutional networks (https://arxiv.org/abs/1810.12890)
Deep Networks with Stochastic Depth (https://arxiv.org/abs/1603.09382)
Code:
DropBlock impl inspired by two Tensorflow impl that I liked:
- https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_model.py#L74
- https://github.com/clovaai/assembled-cnn/blob/master/nets/blocks.py
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
def drop_block_2d(
x,
drop_prob: float = 0.1,
block_size: int = 7,
gamma_scale: float = 1.0,
with_noise: bool = False,
inplace: bool = False,
batchwise: bool = False,
):
"""DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
DropBlock with an experimental gaussian noise option. This layer has been tested on a few training
runs with success, but needs further validation and possibly optimization for lower runtime impact.
"""
_, C, H, W = x.shape
total_size = W * H
clipped_block_size = min(block_size, min(W, H))
# seed_drop_rate, the gamma parameter
gamma = (
gamma_scale
* drop_prob
* total_size
/ clipped_block_size**2
/ ((W - block_size + 1) * (H - block_size + 1))
)
# Forces the block to be inside the feature map.
w_i, h_i = torch.meshgrid(
torch.arange(W).to(x.device), torch.arange(H).to(x.device)
)
valid_block = (
(w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2)
) & ((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2))
valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype)
if batchwise:
# one mask for whole batch, quite a bit faster
uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device)
else:
uniform_noise = torch.rand_like(x)
block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype)
block_mask = -F.max_pool2d(
-block_mask,
kernel_size=clipped_block_size, # block_size,
stride=1,
padding=clipped_block_size // 2,
)
if with_noise:
normal_noise = (
torch.randn((1, C, H, W), dtype=x.dtype, device=x.device)
if batchwise
else torch.randn_like(x)
)
if inplace:
x.mul_(block_mask).add_(normal_noise * (1 - block_mask))
else:
x = x * block_mask + normal_noise * (1 - block_mask)
else:
normalize_scale = (
block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)
).to(x.dtype)
if inplace:
x.mul_(block_mask * normalize_scale)
else:
x = x * block_mask * normalize_scale
return x
def drop_block_fast_2d(
x: torch.Tensor,
drop_prob: float = 0.1,
block_size: int = 7,
gamma_scale: float = 1.0,
with_noise: bool = False,
inplace: bool = False,
):
"""DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid
block mask at edges.
"""
_, _, H, W = x.shape
total_size = W * H
clipped_block_size = min(block_size, min(W, H))
gamma = (
gamma_scale
* drop_prob
* total_size
/ clipped_block_size**2
/ ((W - block_size + 1) * (H - block_size + 1))
)
block_mask = torch.empty_like(x).bernoulli_(gamma)
block_mask = F.max_pool2d(
block_mask.to(x.dtype),
kernel_size=clipped_block_size,
stride=1,
padding=clipped_block_size // 2,
)
if with_noise:
normal_noise = torch.empty_like(x).normal_()
if inplace:
x.mul_(1.0 - block_mask).add_(normal_noise * block_mask)
else:
x = x * (1.0 - block_mask) + normal_noise * block_mask
else:
block_mask = 1 - block_mask
normalize_scale = (
block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-6)
).to(dtype=x.dtype)
if inplace:
x.mul_(block_mask * normalize_scale)
else:
x = x * block_mask * normalize_scale
return x
class DropBlock2d(nn.Module):
"""DropBlock. See https://arxiv.org/pdf/1810.12890.pdf"""
def __init__(
self,
drop_prob: float = 0.1,
block_size: int = 7,
gamma_scale: float = 1.0,
with_noise: bool = False,
inplace: bool = False,
batchwise: bool = False,
fast: bool = True,
):
super(DropBlock2d, self).__init__()
self.drop_prob = drop_prob
self.gamma_scale = gamma_scale
self.block_size = block_size
self.with_noise = with_noise
self.inplace = inplace
self.batchwise = batchwise
self.fast = fast # FIXME finish comparisons of fast vs not
def forward(self, x):
if not self.training or not self.drop_prob:
return x
if self.fast:
return drop_block_fast_2d(
x,
self.drop_prob,
self.block_size,
self.gamma_scale,
self.with_noise,
self.inplace,
)
else:
return drop_block_2d(
x,
self.drop_prob,
self.block_size,
self.gamma_scale,
self.with_noise,
self.inplace,
self.batchwise,
)
def drop_path(
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
def extra_repr(self):
return f"drop_prob={round(self.drop_prob,3):0.3f}"

View File

@ -0,0 +1,31 @@
""" Layer/Module Helpers
Hacked together by / Copyright 2020 Ross Wightman
"""
import collections.abc
from itertools import repeat
# From PyTorch internals
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
return x
return tuple(repeat(x, n))
return parse
to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple
def make_divisible(v, divisor=8, min_value=None, round_limit=0.9):
min_value = min_value or divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < round_limit * v:
new_v += divisor
return new_v

View File

@ -0,0 +1,128 @@
import math
import warnings
import torch
from torch.nn.init import _calculate_fan_in_and_fan_out
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(
tensor: torch.Tensor, mean=0.0, std=1.0, a=-2.0, b=2.0
) -> torch.Tensor:
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are
applied while sampling the normal with mean/std applied, therefore a, b args
should be adjusted to match the range of mean, std args.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def trunc_normal_tf_(
tensor: torch.Tensor, mean=0.0, std=1.0, a=-2.0, b=2.0
) -> torch.Tensor:
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
and the result is subsquently scaled and shifted by the mean and std args.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
_no_grad_trunc_normal_(tensor, 0, 1.0, a, b)
with torch.no_grad():
tensor.mul_(std).add_(mean)
return tensor
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
if mode == "fan_in":
denom = fan_in
elif mode == "fan_out":
denom = fan_out
elif mode == "fan_avg":
denom = (fan_in + fan_out) / 2
variance = scale / denom # type: ignore
if distribution == "truncated_normal":
# constant is stddev of standard normal truncated to (-2, 2)
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
elif distribution == "normal":
tensor.normal_(std=math.sqrt(variance))
elif distribution == "uniform":
bound = math.sqrt(3 * variance)
# pylint: disable=invalid-unary-operand-type
tensor.uniform_(-bound, bound)
else:
raise ValueError(f"invalid distribution {distribution}")
def lecun_normal_(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")

View File

@ -0,0 +1,89 @@
import logging as logger
from .architecture.face.codeformer import CodeFormer
from .architecture.face.gfpganv1_clean_arch import GFPGANv1Clean
from .architecture.face.restoreformer_arch import RestoreFormer
from .architecture.HAT import HAT
from .architecture.LaMa import LaMa
from .architecture.MAT import MAT
from .architecture.RRDB import RRDBNet as ESRGAN
from .architecture.SPSR import SPSRNet as SPSR
from .architecture.SRVGG import SRVGGNetCompact as RealESRGANv2
from .architecture.SwiftSRGAN import Generator as SwiftSRGAN
from .architecture.Swin2SR import Swin2SR
from .architecture.SwinIR import SwinIR
from .types import PyTorchModel
class UnsupportedModel(Exception):
pass
def load_state_dict(state_dict) -> PyTorchModel:
logger.debug(f"Loading state dict into pytorch model arch")
state_dict_keys = list(state_dict.keys())
if "params_ema" in state_dict_keys:
state_dict = state_dict["params_ema"]
elif "params-ema" in state_dict_keys:
state_dict = state_dict["params-ema"]
elif "params" in state_dict_keys:
state_dict = state_dict["params"]
state_dict_keys = list(state_dict.keys())
# SRVGGNet Real-ESRGAN (v2)
if "body.0.weight" in state_dict_keys and "body.1.weight" in state_dict_keys:
model = RealESRGANv2(state_dict)
# SPSR (ESRGAN with lots of extra layers)
elif "f_HR_conv1.0.weight" in state_dict:
model = SPSR(state_dict)
# Swift-SRGAN
elif (
"model" in state_dict_keys
and "initial.cnn.depthwise.weight" in state_dict["model"].keys()
):
model = SwiftSRGAN(state_dict)
# HAT -- be sure it is above swinir
elif "layers.0.residual_group.blocks.0.conv_block.cab.0.weight" in state_dict_keys:
model = HAT(state_dict)
# SwinIR
elif "layers.0.residual_group.blocks.0.norm1.weight" in state_dict_keys:
if "patch_embed.proj.weight" in state_dict_keys:
model = Swin2SR(state_dict)
else:
model = SwinIR(state_dict)
# GFPGAN
elif (
"toRGB.0.weight" in state_dict_keys
and "stylegan_decoder.style_mlp.1.weight" in state_dict_keys
):
model = GFPGANv1Clean(state_dict)
# RestoreFormer
elif (
"encoder.conv_in.weight" in state_dict_keys
and "encoder.down.0.block.0.norm1.weight" in state_dict_keys
):
model = RestoreFormer(state_dict)
elif (
"encoder.blocks.0.weight" in state_dict_keys
and "quantize.embedding.weight" in state_dict_keys
):
model = CodeFormer(state_dict)
# LaMa
elif (
"model.model.1.bn_l.running_mean" in state_dict_keys
or "generator.model.1.bn_l.running_mean" in state_dict_keys
):
model = LaMa(state_dict)
# MAT
elif "synthesis.first_stage.conv_first.conv.resample_filter" in state_dict_keys:
model = MAT(state_dict)
# Regular ESRGAN, "new-arch" ESRGAN, Real-ESRGAN v1
else:
try:
model = ESRGAN(state_dict)
except:
# pylint: disable=raise-missing-from
raise UnsupportedModel
return model

View File

@ -0,0 +1,53 @@
from typing import Union
from .architecture.face.codeformer import CodeFormer
from .architecture.face.gfpganv1_clean_arch import GFPGANv1Clean
from .architecture.face.restoreformer_arch import RestoreFormer
from .architecture.HAT import HAT
from .architecture.LaMa import LaMa
from .architecture.MAT import MAT
from .architecture.RRDB import RRDBNet as ESRGAN
from .architecture.SPSR import SPSRNet as SPSR
from .architecture.SRVGG import SRVGGNetCompact as RealESRGANv2
from .architecture.SwiftSRGAN import Generator as SwiftSRGAN
from .architecture.Swin2SR import Swin2SR
from .architecture.SwinIR import SwinIR
PyTorchSRModels = (RealESRGANv2, SPSR, SwiftSRGAN, ESRGAN, SwinIR, Swin2SR, HAT)
PyTorchSRModel = Union[
RealESRGANv2,
SPSR,
SwiftSRGAN,
ESRGAN,
SwinIR,
Swin2SR,
HAT,
]
def is_pytorch_sr_model(model: object):
return isinstance(model, PyTorchSRModels)
PyTorchFaceModels = (GFPGANv1Clean, RestoreFormer, CodeFormer)
PyTorchFaceModel = Union[GFPGANv1Clean, RestoreFormer, CodeFormer]
def is_pytorch_face_model(model: object):
return isinstance(model, PyTorchFaceModels)
PyTorchInpaintModels = (LaMa, MAT)
PyTorchInpaintModel = Union[LaMa, MAT]
def is_pytorch_inpaint_model(model: object):
return isinstance(model, PyTorchInpaintModels)
PyTorchModels = (*PyTorchSRModels, *PyTorchFaceModels, *PyTorchInpaintModels)
PyTorchModel = Union[PyTorchSRModel, PyTorchFaceModel, PyTorchInpaintModel]
def is_pytorch_model(model: object):
return isinstance(model, PyTorchModels)

View File

@ -0,0 +1,52 @@
import os
from comfy_extras.chainner_models import model_loading
from comfy.sd import load_torch_file
import comfy.model_management
from nodes import filter_files_extensions, recursive_search, supported_ckpt_extensions
import torch
class UpscaleModelLoader:
models_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), "models")
upscale_model_dir = os.path.join(models_dir, "upscale_models")
@classmethod
def INPUT_TYPES(s):
return {"required": { "model_name": (filter_files_extensions(recursive_search(s.upscale_model_dir), supported_ckpt_extensions), ),
}}
RETURN_TYPES = ("UPSCALE_MODEL",)
FUNCTION = "load_model"
CATEGORY = "loaders"
def load_model(self, model_name):
model_path = os.path.join(self.upscale_model_dir, model_name)
sd = load_torch_file(model_path)
out = model_loading.load_state_dict(sd).eval()
return (out, )
class ImageUpscaleWithModel:
@classmethod
def INPUT_TYPES(s):
return {"required": { "upscale_model": ("UPSCALE_MODEL",),
"image": ("IMAGE",),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "upscale"
CATEGORY = "image"
def upscale(self, upscale_model, image):
device = comfy.model_management.get_torch_device()
upscale_model.to(device)
in_img = image.movedim(-1,-3).to(device)
with torch.inference_mode():
s = upscale_model(in_img).cpu()
upscale_model.cpu()
s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0)
return (s,)
NODE_CLASS_MAPPINGS = {
"UpscaleModelLoader": UpscaleModelLoader,
"ImageUpscaleWithModel": ImageUpscaleWithModel
}

View File

@ -981,3 +981,5 @@ def load_custom_nodes():
load_custom_node(module_path)
load_custom_nodes()
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))