From 9093301a49a90b654a7f37f6f621784b78579e2d Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 27 Jun 2025 11:14:56 -0700 Subject: [PATCH] Don't add tiny bit of random noise when VAE encoding. (#8705) Shouldn't change outputs but might make things a tiny bit more deterministic. --- comfy/ldm/models/autoencoder.py | 8 ++------ 1 file changed, 2 insertions(+), 6 deletions(-) diff --git a/comfy/ldm/models/autoencoder.py b/comfy/ldm/models/autoencoder.py index e6493155e..13bd6e16b 100644 --- a/comfy/ldm/models/autoencoder.py +++ b/comfy/ldm/models/autoencoder.py @@ -11,7 +11,7 @@ from comfy.ldm.modules.ema import LitEma import comfy.ops class DiagonalGaussianRegularizer(torch.nn.Module): - def __init__(self, sample: bool = True): + def __init__(self, sample: bool = False): super().__init__() self.sample = sample @@ -19,16 +19,12 @@ class DiagonalGaussianRegularizer(torch.nn.Module): yield from () def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: - log = dict() posterior = DiagonalGaussianDistribution(z) if self.sample: z = posterior.sample() else: z = posterior.mode() - kl_loss = posterior.kl() - kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] - log["kl_loss"] = kl_loss - return z, log + return z, None class AbstractAutoencoder(torch.nn.Module):