mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-17 04:46:57 +08:00
Remove windows line endings. (#8866)
This commit is contained in:
parent
8f05fb48ea
commit
938d3e8216
@ -1,256 +1,256 @@
|
||||
# Based on:
|
||||
# https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license]
|
||||
# https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license]
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .blocks import (
|
||||
t2i_modulate,
|
||||
CaptionEmbedder,
|
||||
AttentionKVCompress,
|
||||
MultiHeadCrossAttention,
|
||||
T2IFinalLayer,
|
||||
SizeEmbedder,
|
||||
)
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, PatchEmbed, Mlp, get_1d_sincos_pos_embed_from_grid_torch
|
||||
|
||||
|
||||
def get_2d_sincos_pos_embed_torch(embed_dim, w, h, pe_interpolation=1.0, base_size=16, device=None, dtype=torch.float32):
|
||||
grid_h, grid_w = torch.meshgrid(
|
||||
torch.arange(h, device=device, dtype=dtype) / (h/base_size) / pe_interpolation,
|
||||
torch.arange(w, device=device, dtype=dtype) / (w/base_size) / pe_interpolation,
|
||||
indexing='ij'
|
||||
)
|
||||
emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype)
|
||||
emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype)
|
||||
emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D)
|
||||
return emb
|
||||
|
||||
class PixArtMSBlock(nn.Module):
|
||||
"""
|
||||
A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning.
|
||||
"""
|
||||
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None,
|
||||
sampling=None, sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **block_kwargs):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.attn = AttentionKVCompress(
|
||||
hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio,
|
||||
qk_norm=qk_norm, dtype=dtype, device=device, operations=operations, **block_kwargs
|
||||
)
|
||||
self.cross_attn = MultiHeadCrossAttention(
|
||||
hidden_size, num_heads, dtype=dtype, device=device, operations=operations, **block_kwargs
|
||||
)
|
||||
self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
# to be compatible with lower version pytorch
|
||||
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
||||
self.mlp = Mlp(
|
||||
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5)
|
||||
|
||||
def forward(self, x, y, t, mask=None, HW=None, **kwargs):
|
||||
B, N, C = x.shape
|
||||
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t.reshape(B, 6, -1)).chunk(6, dim=1)
|
||||
x = x + (gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW))
|
||||
x = x + self.cross_attn(x, y, mask)
|
||||
x = x + (gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
### Core PixArt Model ###
|
||||
class PixArtMS(nn.Module):
|
||||
"""
|
||||
Diffusion model with a Transformer backbone.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
input_size=32,
|
||||
patch_size=2,
|
||||
in_channels=4,
|
||||
hidden_size=1152,
|
||||
depth=28,
|
||||
num_heads=16,
|
||||
mlp_ratio=4.0,
|
||||
class_dropout_prob=0.1,
|
||||
learn_sigma=True,
|
||||
pred_sigma=True,
|
||||
drop_path: float = 0.,
|
||||
caption_channels=4096,
|
||||
pe_interpolation=None,
|
||||
pe_precision=None,
|
||||
config=None,
|
||||
model_max_length=120,
|
||||
micro_condition=True,
|
||||
qk_norm=False,
|
||||
kv_compress_config=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs,
|
||||
):
|
||||
nn.Module.__init__(self)
|
||||
self.dtype = dtype
|
||||
self.pred_sigma = pred_sigma
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels * 2 if pred_sigma else in_channels
|
||||
self.patch_size = patch_size
|
||||
self.num_heads = num_heads
|
||||
self.pe_interpolation = pe_interpolation
|
||||
self.pe_precision = pe_precision
|
||||
self.hidden_size = hidden_size
|
||||
self.depth = depth
|
||||
|
||||
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
||||
self.t_block = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(hidden_size, 6 * hidden_size, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
self.x_embedder = PatchEmbed(
|
||||
patch_size=patch_size,
|
||||
in_chans=in_channels,
|
||||
embed_dim=hidden_size,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
self.t_embedder = TimestepEmbedder(
|
||||
hidden_size, dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
self.y_embedder = CaptionEmbedder(
|
||||
in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob,
|
||||
act_layer=approx_gelu, token_num=model_max_length,
|
||||
dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
|
||||
self.micro_conditioning = micro_condition
|
||||
if self.micro_conditioning:
|
||||
self.csize_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
|
||||
self.ar_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# For fixed sin-cos embedding:
|
||||
# num_patches = (input_size // patch_size) * (input_size // patch_size)
|
||||
# self.base_size = input_size // self.patch_size
|
||||
# self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))
|
||||
|
||||
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule
|
||||
if kv_compress_config is None:
|
||||
kv_compress_config = {
|
||||
'sampling': None,
|
||||
'scale_factor': 1,
|
||||
'kv_compress_layer': [],
|
||||
}
|
||||
self.blocks = nn.ModuleList([
|
||||
PixArtMSBlock(
|
||||
hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i],
|
||||
sampling=kv_compress_config['sampling'],
|
||||
sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1,
|
||||
qk_norm=qk_norm,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
for i in range(depth)
|
||||
])
|
||||
self.final_layer = T2IFinalLayer(
|
||||
hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
def forward_orig(self, x, timestep, y, mask=None, c_size=None, c_ar=None, **kwargs):
|
||||
"""
|
||||
Original forward pass of PixArt.
|
||||
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
||||
t: (N,) tensor of diffusion timesteps
|
||||
y: (N, 1, 120, C) conditioning
|
||||
ar: (N, 1): aspect ratio
|
||||
cs: (N ,2) size conditioning for height/width
|
||||
"""
|
||||
B, C, H, W = x.shape
|
||||
c_res = (H + W) // 2
|
||||
pe_interpolation = self.pe_interpolation
|
||||
if pe_interpolation is None or self.pe_precision is not None:
|
||||
# calculate pe_interpolation on-the-fly
|
||||
pe_interpolation = round(c_res / (512/8.0), self.pe_precision or 0)
|
||||
|
||||
pos_embed = get_2d_sincos_pos_embed_torch(
|
||||
self.hidden_size,
|
||||
h=(H // self.patch_size),
|
||||
w=(W // self.patch_size),
|
||||
pe_interpolation=pe_interpolation,
|
||||
base_size=((round(c_res / 64) * 64) // self.patch_size),
|
||||
device=x.device,
|
||||
dtype=x.dtype,
|
||||
).unsqueeze(0)
|
||||
|
||||
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
|
||||
t = self.t_embedder(timestep, x.dtype) # (N, D)
|
||||
|
||||
if self.micro_conditioning and (c_size is not None and c_ar is not None):
|
||||
bs = x.shape[0]
|
||||
c_size = self.csize_embedder(c_size, bs) # (N, D)
|
||||
c_ar = self.ar_embedder(c_ar, bs) # (N, D)
|
||||
t = t + torch.cat([c_size, c_ar], dim=1)
|
||||
|
||||
t0 = self.t_block(t)
|
||||
y = self.y_embedder(y, self.training) # (N, D)
|
||||
|
||||
if mask is not None:
|
||||
if mask.shape[0] != y.shape[0]:
|
||||
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
|
||||
mask = mask.squeeze(1).squeeze(1)
|
||||
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
|
||||
y_lens = mask.sum(dim=1).tolist()
|
||||
else:
|
||||
y_lens = None
|
||||
y = y.squeeze(1).view(1, -1, x.shape[-1])
|
||||
for block in self.blocks:
|
||||
x = block(x, y, t0, y_lens, (H, W), **kwargs) # (N, T, D)
|
||||
|
||||
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
|
||||
x = self.unpatchify(x, H, W) # (N, out_channels, H, W)
|
||||
|
||||
return x
|
||||
|
||||
def forward(self, x, timesteps, context, c_size=None, c_ar=None, **kwargs):
|
||||
B, C, H, W = x.shape
|
||||
|
||||
# Fallback for missing microconds
|
||||
if self.micro_conditioning:
|
||||
if c_size is None:
|
||||
c_size = torch.tensor([H*8, W*8], dtype=x.dtype, device=x.device).repeat(B, 1)
|
||||
|
||||
if c_ar is None:
|
||||
c_ar = torch.tensor([H/W], dtype=x.dtype, device=x.device).repeat(B, 1)
|
||||
|
||||
## Still accepts the input w/o that dim but returns garbage
|
||||
if len(context.shape) == 3:
|
||||
context = context.unsqueeze(1)
|
||||
|
||||
## run original forward pass
|
||||
out = self.forward_orig(x, timesteps, context, c_size=c_size, c_ar=c_ar)
|
||||
|
||||
## only return EPS
|
||||
if self.pred_sigma:
|
||||
return out[:, :self.in_channels]
|
||||
return out
|
||||
|
||||
def unpatchify(self, x, h, w):
|
||||
"""
|
||||
x: (N, T, patch_size**2 * C)
|
||||
imgs: (N, H, W, C)
|
||||
"""
|
||||
c = self.out_channels
|
||||
p = self.x_embedder.patch_size[0]
|
||||
h = h // self.patch_size
|
||||
w = w // self.patch_size
|
||||
assert h * w == x.shape[1]
|
||||
|
||||
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
||||
x = torch.einsum('nhwpqc->nchpwq', x)
|
||||
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
||||
return imgs
|
||||
# Based on:
|
||||
# https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license]
|
||||
# https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license]
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .blocks import (
|
||||
t2i_modulate,
|
||||
CaptionEmbedder,
|
||||
AttentionKVCompress,
|
||||
MultiHeadCrossAttention,
|
||||
T2IFinalLayer,
|
||||
SizeEmbedder,
|
||||
)
|
||||
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, PatchEmbed, Mlp, get_1d_sincos_pos_embed_from_grid_torch
|
||||
|
||||
|
||||
def get_2d_sincos_pos_embed_torch(embed_dim, w, h, pe_interpolation=1.0, base_size=16, device=None, dtype=torch.float32):
|
||||
grid_h, grid_w = torch.meshgrid(
|
||||
torch.arange(h, device=device, dtype=dtype) / (h/base_size) / pe_interpolation,
|
||||
torch.arange(w, device=device, dtype=dtype) / (w/base_size) / pe_interpolation,
|
||||
indexing='ij'
|
||||
)
|
||||
emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype)
|
||||
emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype)
|
||||
emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D)
|
||||
return emb
|
||||
|
||||
class PixArtMSBlock(nn.Module):
|
||||
"""
|
||||
A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning.
|
||||
"""
|
||||
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None,
|
||||
sampling=None, sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **block_kwargs):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.attn = AttentionKVCompress(
|
||||
hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio,
|
||||
qk_norm=qk_norm, dtype=dtype, device=device, operations=operations, **block_kwargs
|
||||
)
|
||||
self.cross_attn = MultiHeadCrossAttention(
|
||||
hidden_size, num_heads, dtype=dtype, device=device, operations=operations, **block_kwargs
|
||||
)
|
||||
self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
# to be compatible with lower version pytorch
|
||||
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
||||
self.mlp = Mlp(
|
||||
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5)
|
||||
|
||||
def forward(self, x, y, t, mask=None, HW=None, **kwargs):
|
||||
B, N, C = x.shape
|
||||
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t.reshape(B, 6, -1)).chunk(6, dim=1)
|
||||
x = x + (gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW))
|
||||
x = x + self.cross_attn(x, y, mask)
|
||||
x = x + (gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
### Core PixArt Model ###
|
||||
class PixArtMS(nn.Module):
|
||||
"""
|
||||
Diffusion model with a Transformer backbone.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
input_size=32,
|
||||
patch_size=2,
|
||||
in_channels=4,
|
||||
hidden_size=1152,
|
||||
depth=28,
|
||||
num_heads=16,
|
||||
mlp_ratio=4.0,
|
||||
class_dropout_prob=0.1,
|
||||
learn_sigma=True,
|
||||
pred_sigma=True,
|
||||
drop_path: float = 0.,
|
||||
caption_channels=4096,
|
||||
pe_interpolation=None,
|
||||
pe_precision=None,
|
||||
config=None,
|
||||
model_max_length=120,
|
||||
micro_condition=True,
|
||||
qk_norm=False,
|
||||
kv_compress_config=None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
**kwargs,
|
||||
):
|
||||
nn.Module.__init__(self)
|
||||
self.dtype = dtype
|
||||
self.pred_sigma = pred_sigma
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels * 2 if pred_sigma else in_channels
|
||||
self.patch_size = patch_size
|
||||
self.num_heads = num_heads
|
||||
self.pe_interpolation = pe_interpolation
|
||||
self.pe_precision = pe_precision
|
||||
self.hidden_size = hidden_size
|
||||
self.depth = depth
|
||||
|
||||
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
||||
self.t_block = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
operations.Linear(hidden_size, 6 * hidden_size, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
self.x_embedder = PatchEmbed(
|
||||
patch_size=patch_size,
|
||||
in_chans=in_channels,
|
||||
embed_dim=hidden_size,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
self.t_embedder = TimestepEmbedder(
|
||||
hidden_size, dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
self.y_embedder = CaptionEmbedder(
|
||||
in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob,
|
||||
act_layer=approx_gelu, token_num=model_max_length,
|
||||
dtype=dtype, device=device, operations=operations,
|
||||
)
|
||||
|
||||
self.micro_conditioning = micro_condition
|
||||
if self.micro_conditioning:
|
||||
self.csize_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
|
||||
self.ar_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
# For fixed sin-cos embedding:
|
||||
# num_patches = (input_size // patch_size) * (input_size // patch_size)
|
||||
# self.base_size = input_size // self.patch_size
|
||||
# self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))
|
||||
|
||||
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule
|
||||
if kv_compress_config is None:
|
||||
kv_compress_config = {
|
||||
'sampling': None,
|
||||
'scale_factor': 1,
|
||||
'kv_compress_layer': [],
|
||||
}
|
||||
self.blocks = nn.ModuleList([
|
||||
PixArtMSBlock(
|
||||
hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i],
|
||||
sampling=kv_compress_config['sampling'],
|
||||
sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1,
|
||||
qk_norm=qk_norm,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
for i in range(depth)
|
||||
])
|
||||
self.final_layer = T2IFinalLayer(
|
||||
hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
def forward_orig(self, x, timestep, y, mask=None, c_size=None, c_ar=None, **kwargs):
|
||||
"""
|
||||
Original forward pass of PixArt.
|
||||
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
||||
t: (N,) tensor of diffusion timesteps
|
||||
y: (N, 1, 120, C) conditioning
|
||||
ar: (N, 1): aspect ratio
|
||||
cs: (N ,2) size conditioning for height/width
|
||||
"""
|
||||
B, C, H, W = x.shape
|
||||
c_res = (H + W) // 2
|
||||
pe_interpolation = self.pe_interpolation
|
||||
if pe_interpolation is None or self.pe_precision is not None:
|
||||
# calculate pe_interpolation on-the-fly
|
||||
pe_interpolation = round(c_res / (512/8.0), self.pe_precision or 0)
|
||||
|
||||
pos_embed = get_2d_sincos_pos_embed_torch(
|
||||
self.hidden_size,
|
||||
h=(H // self.patch_size),
|
||||
w=(W // self.patch_size),
|
||||
pe_interpolation=pe_interpolation,
|
||||
base_size=((round(c_res / 64) * 64) // self.patch_size),
|
||||
device=x.device,
|
||||
dtype=x.dtype,
|
||||
).unsqueeze(0)
|
||||
|
||||
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
|
||||
t = self.t_embedder(timestep, x.dtype) # (N, D)
|
||||
|
||||
if self.micro_conditioning and (c_size is not None and c_ar is not None):
|
||||
bs = x.shape[0]
|
||||
c_size = self.csize_embedder(c_size, bs) # (N, D)
|
||||
c_ar = self.ar_embedder(c_ar, bs) # (N, D)
|
||||
t = t + torch.cat([c_size, c_ar], dim=1)
|
||||
|
||||
t0 = self.t_block(t)
|
||||
y = self.y_embedder(y, self.training) # (N, D)
|
||||
|
||||
if mask is not None:
|
||||
if mask.shape[0] != y.shape[0]:
|
||||
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
|
||||
mask = mask.squeeze(1).squeeze(1)
|
||||
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
|
||||
y_lens = mask.sum(dim=1).tolist()
|
||||
else:
|
||||
y_lens = None
|
||||
y = y.squeeze(1).view(1, -1, x.shape[-1])
|
||||
for block in self.blocks:
|
||||
x = block(x, y, t0, y_lens, (H, W), **kwargs) # (N, T, D)
|
||||
|
||||
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
|
||||
x = self.unpatchify(x, H, W) # (N, out_channels, H, W)
|
||||
|
||||
return x
|
||||
|
||||
def forward(self, x, timesteps, context, c_size=None, c_ar=None, **kwargs):
|
||||
B, C, H, W = x.shape
|
||||
|
||||
# Fallback for missing microconds
|
||||
if self.micro_conditioning:
|
||||
if c_size is None:
|
||||
c_size = torch.tensor([H*8, W*8], dtype=x.dtype, device=x.device).repeat(B, 1)
|
||||
|
||||
if c_ar is None:
|
||||
c_ar = torch.tensor([H/W], dtype=x.dtype, device=x.device).repeat(B, 1)
|
||||
|
||||
## Still accepts the input w/o that dim but returns garbage
|
||||
if len(context.shape) == 3:
|
||||
context = context.unsqueeze(1)
|
||||
|
||||
## run original forward pass
|
||||
out = self.forward_orig(x, timesteps, context, c_size=c_size, c_ar=c_ar)
|
||||
|
||||
## only return EPS
|
||||
if self.pred_sigma:
|
||||
return out[:, :self.in_channels]
|
||||
return out
|
||||
|
||||
def unpatchify(self, x, h, w):
|
||||
"""
|
||||
x: (N, T, patch_size**2 * C)
|
||||
imgs: (N, H, W, C)
|
||||
"""
|
||||
c = self.out_channels
|
||||
p = self.x_embedder.patch_size[0]
|
||||
h = h // self.patch_size
|
||||
w = w // self.patch_size
|
||||
assert h * w == x.shape[1]
|
||||
|
||||
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
||||
x = torch.einsum('nhwpqc->nchpwq', x)
|
||||
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
||||
return imgs
|
||||
|
@ -1,42 +1,42 @@
|
||||
import os
|
||||
|
||||
from comfy import sd1_clip
|
||||
import comfy.text_encoders.t5
|
||||
import comfy.text_encoders.sd3_clip
|
||||
from comfy.sd1_clip import gen_empty_tokens
|
||||
|
||||
from transformers import T5TokenizerFast
|
||||
|
||||
class T5XXLModel(comfy.text_encoders.sd3_clip.T5XXLModel):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def gen_empty_tokens(self, special_tokens, *args, **kwargs):
|
||||
# PixArt expects the negative to be all pad tokens
|
||||
special_tokens = special_tokens.copy()
|
||||
special_tokens.pop("end")
|
||||
return gen_empty_tokens(special_tokens, *args, **kwargs)
|
||||
|
||||
class PixArtT5XXL(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, name="t5xxl", clip_model=T5XXLModel, model_options=model_options)
|
||||
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data) # no padding
|
||||
|
||||
class PixArtTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
|
||||
|
||||
def pixart_te(dtype_t5=None, t5xxl_scaled_fp8=None):
|
||||
class PixArtTEModel_(PixArtT5XXL):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
if dtype is None:
|
||||
dtype = dtype_t5
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return PixArtTEModel_
|
||||
import os
|
||||
|
||||
from comfy import sd1_clip
|
||||
import comfy.text_encoders.t5
|
||||
import comfy.text_encoders.sd3_clip
|
||||
from comfy.sd1_clip import gen_empty_tokens
|
||||
|
||||
from transformers import T5TokenizerFast
|
||||
|
||||
class T5XXLModel(comfy.text_encoders.sd3_clip.T5XXLModel):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def gen_empty_tokens(self, special_tokens, *args, **kwargs):
|
||||
# PixArt expects the negative to be all pad tokens
|
||||
special_tokens = special_tokens.copy()
|
||||
special_tokens.pop("end")
|
||||
return gen_empty_tokens(special_tokens, *args, **kwargs)
|
||||
|
||||
class PixArtT5XXL(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super().__init__(device=device, dtype=dtype, name="t5xxl", clip_model=T5XXLModel, model_options=model_options)
|
||||
|
||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data) # no padding
|
||||
|
||||
class PixArtTokenizer(sd1_clip.SD1Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
|
||||
|
||||
def pixart_te(dtype_t5=None, t5xxl_scaled_fp8=None):
|
||||
class PixArtTEModel_(PixArtT5XXL):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||||
if dtype is None:
|
||||
dtype = dtype_t5
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return PixArtTEModel_
|
||||
|
Loading…
x
Reference in New Issue
Block a user