SLG first implementation for SD3.5 (#5404)

* SLG first implementation for SD3.5

* * Simplify and align with comfy style
This commit is contained in:
Dango233 2024-10-29 21:59:21 +08:00 committed by GitHub
parent 30c0c81351
commit 954683d0db
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -3,7 +3,7 @@ import comfy.sd
import comfy.model_management import comfy.model_management
import nodes import nodes
import torch import torch
import re
class TripleCLIPLoader: class TripleCLIPLoader:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
@ -95,11 +95,70 @@ class ControlNetApplySD3(nodes.ControlNetApplyAdvanced):
CATEGORY = "conditioning/controlnet" CATEGORY = "conditioning/controlnet"
DEPRECATED = True DEPRECATED = True
class SkipLayerGuidanceSD3:
'''
Enhance guidance towards detailed dtructure by having another set of CFG negative with skipped layers.
Inspired by Perturbed Attention Guidance (https://arxiv.org/abs/2403.17377)
Experimental implementation by Dango233@StabilityAI.
'''
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL", ),
"layers": ("STRING", {"default": "7,8,9", "multiline": False}),
"scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.1}),
"start_percent": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001})
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "skip_guidance"
CATEGORY = "advanced/guidance"
def skip_guidance(self, model, layers, scale, start_percent, end_percent):
if layers == "" or layers == None:
return (model, )
# check if layer is comma separated integers
assert layers.replace(",", "").isdigit(), "Layers must be comma separated integers"
def skip(args, extra_args):
return args
model_sampling = model.get_model_object("model_sampling")
def post_cfg_function(args):
model = args["model"]
cond_pred = args["cond_denoised"]
cond = args["cond"]
cfg_result = args["denoised"]
sigma = args["sigma"]
x = args["input"]
model_options = args["model_options"].copy()
for layer in layers:
model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, skip, "dit", "double_block", layer)
model_sampling.percent_to_sigma(start_percent)
sigma_start = model_sampling.percent_to_sigma(start_percent)
sigma_end = model_sampling.percent_to_sigma(end_percent)
sigma_ = sigma[0].item()
if scale > 0 and sigma_ > sigma_end and sigma_ < sigma_start:
(slg,) = comfy.samplers.calc_cond_batch(model, [cond], x, sigma, model_options)
cfg_result = cfg_result + (cond_pred - slg) * scale
return cfg_result
layers = re.findall(r'\d+', layers)
layers = [int(i) for i in layers]
m = model.clone()
m.set_model_sampler_post_cfg_function(post_cfg_function)
return (m, )
NODE_CLASS_MAPPINGS = { NODE_CLASS_MAPPINGS = {
"TripleCLIPLoader": TripleCLIPLoader, "TripleCLIPLoader": TripleCLIPLoader,
"EmptySD3LatentImage": EmptySD3LatentImage, "EmptySD3LatentImage": EmptySD3LatentImage,
"CLIPTextEncodeSD3": CLIPTextEncodeSD3, "CLIPTextEncodeSD3": CLIPTextEncodeSD3,
"ControlNetApplySD3": ControlNetApplySD3, "ControlNetApplySD3": ControlNetApplySD3,
"SkipLayerGuidanceSD3": SkipLayerGuidanceSD3,
} }
NODE_DISPLAY_NAME_MAPPINGS = { NODE_DISPLAY_NAME_MAPPINGS = {