mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
LoKR support.
This commit is contained in:
parent
6e51c38506
commit
9c335a553f
77
comfy/sd.py
77
comfy/sd.py
@ -111,6 +111,8 @@ def load_lora(path, to_load):
|
|||||||
loaded_keys.add(A_name)
|
loaded_keys.add(A_name)
|
||||||
loaded_keys.add(B_name)
|
loaded_keys.add(B_name)
|
||||||
|
|
||||||
|
|
||||||
|
######## loha
|
||||||
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
||||||
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
||||||
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
||||||
@ -132,6 +134,54 @@ def load_lora(path, to_load):
|
|||||||
loaded_keys.add(hada_w2_a_name)
|
loaded_keys.add(hada_w2_a_name)
|
||||||
loaded_keys.add(hada_w2_b_name)
|
loaded_keys.add(hada_w2_b_name)
|
||||||
|
|
||||||
|
|
||||||
|
######## lokr
|
||||||
|
lokr_w1_name = "{}.lokr_w1".format(x)
|
||||||
|
lokr_w2_name = "{}.lokr_w2".format(x)
|
||||||
|
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
|
||||||
|
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
|
||||||
|
lokr_t2_name = "{}.lokr_t2".format(x)
|
||||||
|
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
|
||||||
|
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
|
||||||
|
|
||||||
|
lokr_w1 = None
|
||||||
|
if lokr_w1_name in lora.keys():
|
||||||
|
lokr_w1 = lora[lokr_w1_name]
|
||||||
|
loaded_keys.add(lokr_w1_name)
|
||||||
|
|
||||||
|
lokr_w2 = None
|
||||||
|
if lokr_w2_name in lora.keys():
|
||||||
|
lokr_w2 = lora[lokr_w2_name]
|
||||||
|
loaded_keys.add(lokr_w2_name)
|
||||||
|
|
||||||
|
lokr_w1_a = None
|
||||||
|
if lokr_w1_a_name in lora.keys():
|
||||||
|
lokr_w1_a = lora[lokr_w1_a_name]
|
||||||
|
loaded_keys.add(lokr_w1_a_name)
|
||||||
|
|
||||||
|
lokr_w1_b = None
|
||||||
|
if lokr_w1_b_name in lora.keys():
|
||||||
|
lokr_w1_b = lora[lokr_w1_b_name]
|
||||||
|
loaded_keys.add(lokr_w1_b_name)
|
||||||
|
|
||||||
|
lokr_w2_a = None
|
||||||
|
if lokr_w2_a_name in lora.keys():
|
||||||
|
lokr_w2_a = lora[lokr_w2_a_name]
|
||||||
|
loaded_keys.add(lokr_w2_a_name)
|
||||||
|
|
||||||
|
lokr_w2_b = None
|
||||||
|
if lokr_w2_b_name in lora.keys():
|
||||||
|
lokr_w2_b = lora[lokr_w2_b_name]
|
||||||
|
loaded_keys.add(lokr_w2_b_name)
|
||||||
|
|
||||||
|
lokr_t2 = None
|
||||||
|
if lokr_t2_name in lora.keys():
|
||||||
|
lokr_t2 = lora[lokr_t2_name]
|
||||||
|
loaded_keys.add(lokr_t2_name)
|
||||||
|
|
||||||
|
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
|
||||||
|
patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)
|
||||||
|
|
||||||
for x in lora.keys():
|
for x in lora.keys():
|
||||||
if x not in loaded_keys:
|
if x not in loaded_keys:
|
||||||
print("lora key not loaded", x)
|
print("lora key not loaded", x)
|
||||||
@ -315,6 +365,33 @@ class ModelPatcher:
|
|||||||
final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
|
final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
|
||||||
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
|
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
|
||||||
weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
|
weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
|
||||||
|
elif len(v) == 8: #lokr
|
||||||
|
w1 = v[0]
|
||||||
|
w2 = v[1]
|
||||||
|
w1_a = v[3]
|
||||||
|
w1_b = v[4]
|
||||||
|
w2_a = v[5]
|
||||||
|
w2_b = v[6]
|
||||||
|
t2 = v[7]
|
||||||
|
dim = None
|
||||||
|
|
||||||
|
if w1 is None:
|
||||||
|
dim = w1_b.shape[0]
|
||||||
|
w1 = torch.mm(w1_a.float(), w1_b.float())
|
||||||
|
|
||||||
|
if w2 is None:
|
||||||
|
dim = w2_b.shape[0]
|
||||||
|
if t2 is None:
|
||||||
|
w2 = torch.mm(w2_a.float(), w2_b.float())
|
||||||
|
else:
|
||||||
|
w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())
|
||||||
|
|
||||||
|
if len(w2.shape) == 4:
|
||||||
|
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||||
|
if v[2] is not None and dim is not None:
|
||||||
|
alpha *= v[2] / dim
|
||||||
|
|
||||||
|
weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
|
||||||
else: #loha
|
else: #loha
|
||||||
w1a = v[0]
|
w1a = v[0]
|
||||||
w1b = v[1]
|
w1b = v[1]
|
||||||
|
Loading…
Reference in New Issue
Block a user