Merge branch 'master' into confirm-clear

This commit is contained in:
missionfloyd 2023-04-04 21:43:28 -06:00 committed by GitHub
commit a126e2c185
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 257 additions and 7 deletions

View File

@ -9,7 +9,7 @@ from typing import Optional, Any
from ldm.modules.attention import MemoryEfficientCrossAttention from ldm.modules.attention import MemoryEfficientCrossAttention
import model_management import model_management
if model_management.xformers_enabled(): if model_management.xformers_enabled_vae():
import xformers import xformers
import xformers.ops import xformers.ops
@ -364,7 +364,7 @@ class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown' assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
if model_management.xformers_enabled() and attn_type == "vanilla": if model_management.xformers_enabled_vae() and attn_type == "vanilla":
attn_type = "vanilla-xformers" attn_type = "vanilla-xformers"
if model_management.pytorch_attention_enabled() and attn_type == "vanilla": if model_management.pytorch_attention_enabled() and attn_type == "vanilla":
attn_type = "vanilla-pytorch" attn_type = "vanilla-pytorch"

View File

@ -199,11 +199,25 @@ def get_autocast_device(dev):
return dev.type return dev.type
return "cuda" return "cuda"
def xformers_enabled(): def xformers_enabled():
if vram_state == CPU: if vram_state == CPU:
return False return False
return XFORMERS_IS_AVAILBLE return XFORMERS_IS_AVAILBLE
def xformers_enabled_vae():
enabled = xformers_enabled()
if not enabled:
return False
try:
#0.0.18 has a bug where Nan is returned when inputs are too big (1152x1920 res images and above)
if xformers.version.__version__ == "0.0.18":
return False
except:
pass
return enabled
def pytorch_attention_enabled(): def pytorch_attention_enabled():
return ENABLE_PYTORCH_ATTENTION return ENABLE_PYTORCH_ATTENTION

View File

@ -0,0 +1,210 @@
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import comfy.utils
class Blend:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image1": ("IMAGE",),
"image2": ("IMAGE",),
"blend_factor": ("FLOAT", {
"default": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01
}),
"blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "blend_images"
CATEGORY = "image/postprocessing"
def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
if image1.shape != image2.shape:
image2 = image2.permute(0, 3, 1, 2)
image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
image2 = image2.permute(0, 2, 3, 1)
blended_image = self.blend_mode(image1, image2, blend_mode)
blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
blended_image = torch.clamp(blended_image, 0, 1)
return (blended_image,)
def blend_mode(self, img1, img2, mode):
if mode == "normal":
return img2
elif mode == "multiply":
return img1 * img2
elif mode == "screen":
return 1 - (1 - img1) * (1 - img2)
elif mode == "overlay":
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
elif mode == "soft_light":
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
else:
raise ValueError(f"Unsupported blend mode: {mode}")
def g(self, x):
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
class Blur:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"blur_radius": ("INT", {
"default": 1,
"min": 1,
"max": 31,
"step": 1
}),
"sigma": ("FLOAT", {
"default": 1.0,
"min": 0.1,
"max": 10.0,
"step": 0.1
}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "blur"
CATEGORY = "image/postprocessing"
def gaussian_kernel(self, kernel_size: int, sigma: float):
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij")
d = torch.sqrt(x * x + y * y)
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
return g / g.sum()
def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
if blur_radius == 0:
return (image,)
batch_size, height, width, channels = image.shape
kernel_size = blur_radius * 2 + 1
kernel = self.gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1)
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
blurred = F.conv2d(image, kernel, padding=kernel_size // 2, groups=channels)
blurred = blurred.permute(0, 2, 3, 1)
return (blurred,)
class Quantize:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"colors": ("INT", {
"default": 256,
"min": 1,
"max": 256,
"step": 1
}),
"dither": (["none", "floyd-steinberg"],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "quantize"
CATEGORY = "image/postprocessing"
def quantize(self, image: torch.Tensor, colors: int = 256, dither: str = "FLOYDSTEINBERG"):
batch_size, height, width, _ = image.shape
result = torch.zeros_like(image)
dither_option = Image.Dither.FLOYDSTEINBERG if dither == "floyd-steinberg" else Image.Dither.NONE
for b in range(batch_size):
tensor_image = image[b]
img = (tensor_image * 255).to(torch.uint8).numpy()
pil_image = Image.fromarray(img, mode='RGB')
palette = pil_image.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
quantized_image = pil_image.quantize(colors=colors, palette=palette, dither=dither_option)
quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
result[b] = quantized_array
return (result,)
class Sharpen:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"sharpen_radius": ("INT", {
"default": 1,
"min": 1,
"max": 31,
"step": 1
}),
"alpha": ("FLOAT", {
"default": 1.0,
"min": 0.1,
"max": 5.0,
"step": 0.1
}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "sharpen"
CATEGORY = "image/postprocessing"
def sharpen(self, image: torch.Tensor, sharpen_radius: int, alpha: float):
if sharpen_radius == 0:
return (image,)
batch_size, height, width, channels = image.shape
kernel_size = sharpen_radius * 2 + 1
kernel = torch.ones((kernel_size, kernel_size), dtype=torch.float32) * -1
center = kernel_size // 2
kernel[center, center] = kernel_size**2
kernel *= alpha
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)
sharpened = sharpened.permute(0, 2, 3, 1)
result = torch.clamp(sharpened, 0, 1)
return (result,)
NODE_CLASS_MAPPINGS = {
"ImageBlend": Blend,
"ImageBlur": Blur,
"ImageQuantize": Quantize,
"ImageSharpen": Sharpen,
}

View File

@ -197,7 +197,7 @@ class CheckpointLoader:
RETURN_TYPES = ("MODEL", "CLIP", "VAE") RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "load_checkpoint" FUNCTION = "load_checkpoint"
CATEGORY = "loaders" CATEGORY = "advanced/loaders"
def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True): def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
config_path = folder_paths.get_full_path("configs", config_name) config_path = folder_paths.get_full_path("configs", config_name)
@ -227,7 +227,7 @@ class unCLIPCheckpointLoader:
RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION") RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
FUNCTION = "load_checkpoint" FUNCTION = "load_checkpoint"
CATEGORY = "_for_testing/unclip" CATEGORY = "loaders"
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True): def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name) ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
@ -450,7 +450,7 @@ class unCLIPConditioning:
RETURN_TYPES = ("CONDITIONING",) RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_adm" FUNCTION = "apply_adm"
CATEGORY = "_for_testing/unclip" CATEGORY = "conditioning"
def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation): def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
c = [] c = []
@ -1038,7 +1038,6 @@ class ImagePadForOutpaint:
NODE_CLASS_MAPPINGS = { NODE_CLASS_MAPPINGS = {
"KSampler": KSampler, "KSampler": KSampler,
"CheckpointLoader": CheckpointLoader,
"CheckpointLoaderSimple": CheckpointLoaderSimple, "CheckpointLoaderSimple": CheckpointLoaderSimple,
"CLIPTextEncode": CLIPTextEncode, "CLIPTextEncode": CLIPTextEncode,
"CLIPSetLastLayer": CLIPSetLastLayer, "CLIPSetLastLayer": CLIPSetLastLayer,
@ -1077,6 +1076,7 @@ NODE_CLASS_MAPPINGS = {
"VAEEncodeTiled": VAEEncodeTiled, "VAEEncodeTiled": VAEEncodeTiled,
"TomePatchModel": TomePatchModel, "TomePatchModel": TomePatchModel,
"unCLIPCheckpointLoader": unCLIPCheckpointLoader, "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
"CheckpointLoader": CheckpointLoader,
} }
def load_custom_node(module_path): def load_custom_node(module_path):
@ -1114,3 +1114,4 @@ def load_custom_nodes():
def init_custom_nodes(): def init_custom_nodes():
load_custom_nodes() load_custom_nodes()
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py")) load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))

View File

@ -237,3 +237,28 @@ button.comfy-queue-btn {
visibility:hidden visibility:hidden
} }
} }
.graphdialog {
min-height: 1em;
}
.graphdialog .name {
font-size: 14px;
font-family: sans-serif;
color: #999999;
}
.graphdialog button {
margin-top: unset;
vertical-align: unset;
height: 1.6em;
padding-right: 8px;
}
.graphdialog input, .graphdialog textarea, .graphdialog select {
background-color: #222;
border: 2px solid;
border-color: #444444;
color: #ddd;
border-radius: 12px 0 0 12px;
}