Refactor unclip code.

This commit is contained in:
comfyanonymous 2023-08-14 23:41:52 -04:00
parent 94fceb8700
commit a2ce9655ca

View File

@ -105,6 +105,29 @@ class BaseModel(torch.nn.Module):
return {**unet_state_dict, **vae_state_dict, **clip_state_dict}
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
adm_inputs = []
weights = []
noise_aug = []
for unclip_cond in unclip_conditioning:
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
weight = unclip_cond["strength"]
noise_augment = unclip_cond["noise_augmentation"]
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
weights.append(weight)
noise_aug.append(noise_augment)
adm_inputs.append(adm_out)
if len(noise_aug) > 1:
adm_out = torch.stack(adm_inputs).sum(0)
noise_augment = noise_augment_merge
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
adm_out = torch.cat((c_adm, noise_level_emb), 1)
return adm_out
class SD21UNCLIP(BaseModel):
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
@ -114,33 +137,11 @@ class SD21UNCLIP(BaseModel):
def encode_adm(self, **kwargs):
unclip_conditioning = kwargs.get("unclip_conditioning", None)
device = kwargs["device"]
if unclip_conditioning is not None:
adm_inputs = []
weights = []
noise_aug = []
for unclip_cond in unclip_conditioning:
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
weight = unclip_cond["strength"]
noise_augment = unclip_cond["noise_augmentation"]
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = self.noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
weights.append(weight)
noise_aug.append(noise_augment)
adm_inputs.append(adm_out)
if len(noise_aug) > 1:
adm_out = torch.stack(adm_inputs).sum(0)
#TODO: add a way to control this
noise_augment = 0.05
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = self.noise_augmentor(adm_out[:, :self.noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
adm_out = torch.cat((c_adm, noise_level_emb), 1)
if unclip_conditioning is None:
return torch.zeros((1, self.adm_channels))
else:
adm_out = torch.zeros((1, self.adm_channels))
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05))
return adm_out
class SDInpaint(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):