mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 02:15:17 +00:00
Refactor unclip code.
This commit is contained in:
parent
94fceb8700
commit
a2ce9655ca
@ -105,6 +105,29 @@ class BaseModel(torch.nn.Module):
|
||||
|
||||
return {**unet_state_dict, **vae_state_dict, **clip_state_dict}
|
||||
|
||||
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
|
||||
adm_inputs = []
|
||||
weights = []
|
||||
noise_aug = []
|
||||
for unclip_cond in unclip_conditioning:
|
||||
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
|
||||
weight = unclip_cond["strength"]
|
||||
noise_augment = unclip_cond["noise_augmentation"]
|
||||
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
||||
weights.append(weight)
|
||||
noise_aug.append(noise_augment)
|
||||
adm_inputs.append(adm_out)
|
||||
|
||||
if len(noise_aug) > 1:
|
||||
adm_out = torch.stack(adm_inputs).sum(0)
|
||||
noise_augment = noise_augment_merge
|
||||
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1)
|
||||
|
||||
return adm_out
|
||||
|
||||
class SD21UNCLIP(BaseModel):
|
||||
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
|
||||
@ -114,33 +137,11 @@ class SD21UNCLIP(BaseModel):
|
||||
def encode_adm(self, **kwargs):
|
||||
unclip_conditioning = kwargs.get("unclip_conditioning", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
if unclip_conditioning is not None:
|
||||
adm_inputs = []
|
||||
weights = []
|
||||
noise_aug = []
|
||||
for unclip_cond in unclip_conditioning:
|
||||
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
|
||||
weight = unclip_cond["strength"]
|
||||
noise_augment = unclip_cond["noise_augmentation"]
|
||||
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = self.noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
||||
weights.append(weight)
|
||||
noise_aug.append(noise_augment)
|
||||
adm_inputs.append(adm_out)
|
||||
|
||||
if len(noise_aug) > 1:
|
||||
adm_out = torch.stack(adm_inputs).sum(0)
|
||||
#TODO: add a way to control this
|
||||
noise_augment = 0.05
|
||||
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = self.noise_augmentor(adm_out[:, :self.noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1)
|
||||
if unclip_conditioning is None:
|
||||
return torch.zeros((1, self.adm_channels))
|
||||
else:
|
||||
adm_out = torch.zeros((1, self.adm_channels))
|
||||
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05))
|
||||
|
||||
return adm_out
|
||||
|
||||
class SDInpaint(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||
|
Loading…
Reference in New Issue
Block a user