Fix lowvram model merging.

This commit is contained in:
comfyanonymous 2023-08-26 11:52:07 -04:00
parent f72780a7e3
commit a57b0c797b
3 changed files with 15 additions and 7 deletions

View File

@ -257,12 +257,7 @@ class ControlLora(ControlNet):
cm = self.control_model.state_dict() cm = self.control_model.state_dict()
for k in sd: for k in sd:
weight = sd[k] weight = comfy.model_management.resolve_lowvram_weight(sd[k], diffusion_model, k)
if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
key_split = k.split('.') # I have no idea why they don't just leave the weight there instead of using the meta device.
op = comfy.utils.get_attr(diffusion_model, '.'.join(key_split[:-1]))
weight = op._hf_hook.weights_map[key_split[-1]]
try: try:
comfy.utils.set_attr(self.control_model, k, weight) comfy.utils.set_attr(self.control_model, k, weight)
except: except:

View File

@ -3,6 +3,7 @@ from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
import comfy.model_management
import numpy as np import numpy as np
from enum import Enum from enum import Enum
from . import utils from . import utils
@ -93,7 +94,11 @@ class BaseModel(torch.nn.Module):
def state_dict_for_saving(self, clip_state_dict, vae_state_dict): def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict) clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
unet_state_dict = self.diffusion_model.state_dict() unet_sd = self.diffusion_model.state_dict()
unet_state_dict = {}
for k in unet_sd:
unet_state_dict[k] = comfy.model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k)
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict) unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict) vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
if self.get_dtype() == torch.float16: if self.get_dtype() == torch.float16:

View File

@ -1,6 +1,7 @@
import psutil import psutil
from enum import Enum from enum import Enum
from comfy.cli_args import args from comfy.cli_args import args
import comfy.utils
import torch import torch
import sys import sys
@ -637,6 +638,13 @@ def soft_empty_cache():
torch.cuda.empty_cache() torch.cuda.empty_cache()
torch.cuda.ipc_collect() torch.cuda.ipc_collect()
def resolve_lowvram_weight(weight, model, key):
if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
key_split = key.split('.') # I have no idea why they don't just leave the weight there instead of using the meta device.
op = comfy.utils.get_attr(model, '.'.join(key_split[:-1]))
weight = op._hf_hook.weights_map[key_split[-1]]
return weight
#TODO: might be cleaner to put this somewhere else #TODO: might be cleaner to put this somewhere else
import threading import threading