Support sampling non 2D latents.

This commit is contained in:
comfyanonymous 2024-06-10 01:05:53 -04:00
parent 742d5720d1
commit a5e6a632f9

View File

@ -8,7 +8,8 @@ import logging
import comfy.sampler_helpers import comfy.sampler_helpers
def get_area_and_mult(conds, x_in, timestep_in): def get_area_and_mult(conds, x_in, timestep_in):
area = (x_in.shape[2], x_in.shape[3], 0, 0) dims = tuple(x_in.shape[2:])
area = None
strength = 1.0 strength = 1.0
if 'timestep_start' in conds: if 'timestep_start' in conds:
@ -20,11 +21,16 @@ def get_area_and_mult(conds, x_in, timestep_in):
if timestep_in[0] < timestep_end: if timestep_in[0] < timestep_end:
return None return None
if 'area' in conds: if 'area' in conds:
area = conds['area'] area = list(conds['area'])
if 'strength' in conds: if 'strength' in conds:
strength = conds['strength'] strength = conds['strength']
input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] input_x = x_in
if area is not None:
for i in range(len(dims)):
area[i] = min(input_x.shape[i + 2] - area[len(dims) + i], area[i])
input_x = input_x.narrow(i + 2, area[len(dims) + i], area[i])
if 'mask' in conds: if 'mask' in conds:
# Scale the mask to the size of the input # Scale the mask to the size of the input
# The mask should have been resized as we began the sampling process # The mask should have been resized as we began the sampling process
@ -32,28 +38,30 @@ def get_area_and_mult(conds, x_in, timestep_in):
if "mask_strength" in conds: if "mask_strength" in conds:
mask_strength = conds["mask_strength"] mask_strength = conds["mask_strength"]
mask = conds['mask'] mask = conds['mask']
assert(mask.shape[1] == x_in.shape[2]) assert(mask.shape[1:] == x_in.shape[2:])
assert(mask.shape[2] == x_in.shape[3])
mask = mask[:input_x.shape[0],area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength mask = mask[:input_x.shape[0]]
if area is not None:
for i in range(len(dims)):
mask = mask.narrow(i + 1, area[len(dims) + i], area[i])
mask = mask * mask_strength
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1) mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
else: else:
mask = torch.ones_like(input_x) mask = torch.ones_like(input_x)
mult = mask * strength mult = mask * strength
if 'mask' not in conds: if 'mask' not in conds and area is not None:
rr = 8 rr = 8
if area[2] != 0: for i in range(len(dims)):
for t in range(rr): if area[len(dims) + i] != 0:
mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1)) for t in range(rr):
if (area[0] + area[2]) < x_in.shape[2]: m = mult.narrow(i + 2, t, 1)
for t in range(rr): m *= ((1.0/rr) * (t + 1))
mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1)) if (area[i] + area[len(dims) + i]) < x_in.shape[i + 2]:
if area[3] != 0: for t in range(rr):
for t in range(rr): m = mult.narrow(i + 2, area[i] - 1 - t, 1)
mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1)) m *= ((1.0/rr) * (t + 1))
if (area[1] + area[3]) < x_in.shape[3]:
for t in range(rr):
mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))
conditioning = {} conditioning = {}
model_conds = conds["model_conds"] model_conds = conds["model_conds"]
@ -219,8 +227,19 @@ def calc_cond_batch(model, conds, x_in, timestep, model_options):
for o in range(batch_chunks): for o in range(batch_chunks):
cond_index = cond_or_uncond[o] cond_index = cond_or_uncond[o]
out_conds[cond_index][:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o] a = area[o]
out_counts[cond_index][:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o] if a is None:
out_conds[cond_index] += output[o] * mult[o]
out_counts[cond_index] += mult[o]
else:
out_c = out_conds[cond_index]
out_cts = out_counts[cond_index]
dims = len(a) // 2
for i in range(dims):
out_c = out_c.narrow(i + 2, a[i + dims], a[i])
out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
out_c += output[o] * mult[o]
out_cts += mult[o]
for i in range(len(out_conds)): for i in range(len(out_conds)):
out_conds[i] /= out_counts[i] out_conds[i] /= out_counts[i]
@ -335,7 +354,7 @@ def get_mask_aabb(masks):
return bounding_boxes, is_empty return bounding_boxes, is_empty
def resolve_areas_and_cond_masks(conditions, h, w, device): def resolve_areas_and_cond_masks_multidim(conditions, dims, device):
# We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes. # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
# While we're doing this, we can also resolve the mask device and scaling for performance reasons # While we're doing this, we can also resolve the mask device and scaling for performance reasons
for i in range(len(conditions)): for i in range(len(conditions)):
@ -344,7 +363,14 @@ def resolve_areas_and_cond_masks(conditions, h, w, device):
area = c['area'] area = c['area']
if area[0] == "percentage": if area[0] == "percentage":
modified = c.copy() modified = c.copy()
area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w)) a = area[1:]
a_len = len(a) // 2
area = ()
for d in range(len(dims)):
area += (max(1, round(a[d] * dims[d])),)
for d in range(len(dims)):
area += (round(a[d + a_len] * dims[d]),)
modified['area'] = area modified['area'] = area
c = modified c = modified
conditions[i] = c conditions[i] = c
@ -353,12 +379,12 @@ def resolve_areas_and_cond_masks(conditions, h, w, device):
mask = c['mask'] mask = c['mask']
mask = mask.to(device=device) mask = mask.to(device=device)
modified = c.copy() modified = c.copy()
if len(mask.shape) == 2: if len(mask.shape) == len(dims):
mask = mask.unsqueeze(0) mask = mask.unsqueeze(0)
if mask.shape[1] != h or mask.shape[2] != w: if mask.shape[1:] != dims:
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1) mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=dims, mode='bilinear', align_corners=False).squeeze(1)
if modified.get("set_area_to_bounds", False): if modified.get("set_area_to_bounds", False): #TODO: handle dim != 2
bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0) bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
boxes, is_empty = get_mask_aabb(bounds) boxes, is_empty = get_mask_aabb(bounds)
if is_empty[0]: if is_empty[0]:
@ -375,7 +401,11 @@ def resolve_areas_and_cond_masks(conditions, h, w, device):
modified['mask'] = mask modified['mask'] = mask
conditions[i] = modified conditions[i] = modified
def create_cond_with_same_area_if_none(conds, c): def resolve_areas_and_cond_masks(conditions, h, w, device):
logging.warning("WARNING: The comfy.samplers.resolve_areas_and_cond_masks function is deprecated please use the resolve_areas_and_cond_masks_multidim one instead.")
return resolve_areas_and_cond_masks_multidim(conditions, [h, w], device)
def create_cond_with_same_area_if_none(conds, c): #TODO: handle dim != 2
if 'area' not in c: if 'area' not in c:
return return
@ -479,7 +509,10 @@ def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwar
params = x.copy() params = x.copy()
params["device"] = device params["device"] = device
params["noise"] = noise params["noise"] = noise
params["width"] = params.get("width", noise.shape[3] * 8) default_width = None
if len(noise.shape) >= 4: #TODO: 8 multiple should be set by the model
default_width = noise.shape[3] * 8
params["width"] = params.get("width", default_width)
params["height"] = params.get("height", noise.shape[2] * 8) params["height"] = params.get("height", noise.shape[2] * 8)
params["prompt_type"] = params.get("prompt_type", prompt_type) params["prompt_type"] = params.get("prompt_type", prompt_type)
for k in kwargs: for k in kwargs:
@ -567,7 +600,7 @@ def ksampler(sampler_name, extra_options={}, inpaint_options={}):
def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None): def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None):
for k in conds: for k in conds:
conds[k] = conds[k][:] conds[k] = conds[k][:]
resolve_areas_and_cond_masks(conds[k], noise.shape[2], noise.shape[3], device) resolve_areas_and_cond_masks_multidim(conds[k], noise.shape[2:], device)
for k in conds: for k in conds:
calculate_start_end_timesteps(model, conds[k]) calculate_start_end_timesteps(model, conds[k])