mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Merge branch 'comfyanonymous:master' into socketrework
This commit is contained in:
commit
a9c57849b7
@ -21,7 +21,7 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
|
||||
- Nodes interface can be used to create complex workflows like one for [Hires fix](https://comfyanonymous.github.io/ComfyUI_examples/2_pass_txt2img/) or much more advanced ones.
|
||||
- [Area Composition](https://comfyanonymous.github.io/ComfyUI_examples/area_composition/)
|
||||
- [Inpainting](https://comfyanonymous.github.io/ComfyUI_examples/inpaint/) with both regular and inpainting models.
|
||||
- [ControlNet](https://comfyanonymous.github.io/ComfyUI_examples/controlnet/)
|
||||
- [ControlNet](https://comfyanonymous.github.io/ComfyUI_examples/controlnet/) and T2I-Adapter
|
||||
- Starts up very fast.
|
||||
- Works fully offline: will never download anything.
|
||||
|
||||
|
@ -1,7 +1,6 @@
|
||||
#taken from: https://github.com/lllyasviel/ControlNet
|
||||
#and modified
|
||||
|
||||
import einops
|
||||
import torch
|
||||
import torch as th
|
||||
import torch.nn as nn
|
||||
@ -13,8 +12,6 @@ from ldm.modules.diffusionmodules.util import (
|
||||
timestep_embedding,
|
||||
)
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from torchvision.utils import make_grid
|
||||
from ldm.modules.attention import SpatialTransformer
|
||||
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
|
||||
from ldm.models.diffusion.ddpm import LatentDiffusion
|
||||
|
@ -774,17 +774,23 @@ class UNetModel(nn.Module):
|
||||
emb = emb + self.label_emb(y)
|
||||
|
||||
h = x.type(self.dtype)
|
||||
for module in self.input_blocks:
|
||||
for id, module in enumerate(self.input_blocks):
|
||||
h = module(h, emb, context)
|
||||
if control is not None and 'input' in control and len(control['input']) > 0:
|
||||
ctrl = control['input'].pop()
|
||||
if ctrl is not None:
|
||||
h += ctrl
|
||||
hs.append(h)
|
||||
h = self.middle_block(h, emb, context)
|
||||
if control is not None:
|
||||
h += control.pop()
|
||||
if control is not None and 'middle' in control and len(control['middle']) > 0:
|
||||
h += control['middle'].pop()
|
||||
|
||||
for module in self.output_blocks:
|
||||
hsp = hs.pop()
|
||||
if control is not None:
|
||||
hsp += control.pop()
|
||||
if control is not None and 'output' in control and len(control['output']) > 0:
|
||||
ctrl = control['output'].pop()
|
||||
if ctrl is not None:
|
||||
hsp += ctrl
|
||||
h = th.cat([h, hsp], dim=1)
|
||||
del hsp
|
||||
h = module(h, emb, context)
|
||||
|
139
comfy/sd.py
139
comfy/sd.py
@ -8,6 +8,7 @@ from ldm.util import instantiate_from_config
|
||||
from ldm.models.autoencoder import AutoencoderKL
|
||||
from omegaconf import OmegaConf
|
||||
from .cldm import cldm
|
||||
from .t2i_adapter import adapter
|
||||
|
||||
from . import utils
|
||||
|
||||
@ -318,6 +319,37 @@ class VAE:
|
||||
pixel_samples = pixel_samples.cpu().movedim(1,-1)
|
||||
return pixel_samples
|
||||
|
||||
def decode_tiled(self, samples):
|
||||
tile_x = tile_y = 64
|
||||
overlap = 8
|
||||
model_management.unload_model()
|
||||
output = torch.empty((samples.shape[0], 3, samples.shape[2] * 8, samples.shape[3] * 8), device="cpu")
|
||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||
for b in range(samples.shape[0]):
|
||||
s = samples[b:b+1]
|
||||
out = torch.zeros((s.shape[0], 3, s.shape[2] * 8, s.shape[3] * 8), device="cpu")
|
||||
out_div = torch.zeros((s.shape[0], 3, s.shape[2] * 8, s.shape[3] * 8), device="cpu")
|
||||
for y in range(0, s.shape[2], tile_y - overlap):
|
||||
for x in range(0, s.shape[3], tile_x - overlap):
|
||||
s_in = s[:,:,y:y+tile_y,x:x+tile_x]
|
||||
|
||||
pixel_samples = self.first_stage_model.decode(1. / self.scale_factor * s_in.to(self.device))
|
||||
pixel_samples = torch.clamp((pixel_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
ps = pixel_samples.cpu()
|
||||
mask = torch.ones_like(ps)
|
||||
feather = overlap * 8
|
||||
for t in range(feather):
|
||||
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
|
||||
mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
|
||||
mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
|
||||
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
|
||||
out[:,:,y*8:(y+tile_y)*8,x*8:(x+tile_x)*8] += ps * mask
|
||||
out_div[:,:,y*8:(y+tile_y)*8,x*8:(x+tile_x)*8] += mask
|
||||
|
||||
output[b:b+1] = out/out_div
|
||||
self.first_stage_model = self.first_stage_model.cpu()
|
||||
return output.movedim(1,-1)
|
||||
|
||||
def encode(self, pixel_samples):
|
||||
model_management.unload_model()
|
||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||
@ -357,18 +389,28 @@ class ControlNet:
|
||||
self.control_model = model_management.load_if_low_vram(self.control_model)
|
||||
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
|
||||
self.control_model = model_management.unload_if_low_vram(self.control_model)
|
||||
out = []
|
||||
out = {'middle':[], 'output': []}
|
||||
autocast_enabled = torch.is_autocast_enabled()
|
||||
|
||||
for i in range(len(control)):
|
||||
if i == (len(control) - 1):
|
||||
key = 'middle'
|
||||
index = 0
|
||||
else:
|
||||
key = 'output'
|
||||
index = i
|
||||
x = control[i]
|
||||
x *= self.strength
|
||||
if x.dtype != output_dtype and not autocast_enabled:
|
||||
x = x.to(output_dtype)
|
||||
|
||||
if control_prev is not None:
|
||||
x += control_prev[i]
|
||||
out.append(x)
|
||||
if control_prev is not None and key in control_prev:
|
||||
prev = control_prev[key][index]
|
||||
if prev is not None:
|
||||
x += prev
|
||||
out[key].append(x)
|
||||
if control_prev is not None and 'input' in control_prev:
|
||||
out['input'] = control_prev['input']
|
||||
return out
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0):
|
||||
@ -463,6 +505,95 @@ def load_controlnet(ckpt_path, model=None):
|
||||
control = ControlNet(control_model)
|
||||
return control
|
||||
|
||||
class T2IAdapter:
|
||||
def __init__(self, t2i_model, channels_in, device="cuda"):
|
||||
self.t2i_model = t2i_model
|
||||
self.channels_in = channels_in
|
||||
self.strength = 1.0
|
||||
self.device = device
|
||||
self.previous_controlnet = None
|
||||
self.control_input = None
|
||||
self.cond_hint_original = None
|
||||
self.cond_hint = None
|
||||
|
||||
def get_control(self, x_noisy, t, cond_txt):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt)
|
||||
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
|
||||
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
||||
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
||||
self.t2i_model.to(self.device)
|
||||
self.control_input = self.t2i_model(self.cond_hint)
|
||||
self.t2i_model.cpu()
|
||||
|
||||
output_dtype = x_noisy.dtype
|
||||
out = {'input':[]}
|
||||
|
||||
for i in range(len(self.control_input)):
|
||||
key = 'input'
|
||||
x = self.control_input[i] * self.strength
|
||||
if x.dtype != output_dtype and not autocast_enabled:
|
||||
x = x.to(output_dtype)
|
||||
|
||||
if control_prev is not None and key in control_prev:
|
||||
index = len(control_prev[key]) - i * 3 - 3
|
||||
prev = control_prev[key][index]
|
||||
if prev is not None:
|
||||
x += prev
|
||||
out[key].insert(0, None)
|
||||
out[key].insert(0, None)
|
||||
out[key].insert(0, x)
|
||||
|
||||
if control_prev is not None and 'input' in control_prev:
|
||||
for i in range(len(out['input'])):
|
||||
if out['input'][i] is None:
|
||||
out['input'][i] = control_prev['input'][i]
|
||||
if control_prev is not None and 'middle' in control_prev:
|
||||
out['middle'] = control_prev['middle']
|
||||
if control_prev is not None and 'output' in control_prev:
|
||||
out['output'] = control_prev['output']
|
||||
return out
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0):
|
||||
self.cond_hint_original = cond_hint
|
||||
self.strength = strength
|
||||
return self
|
||||
|
||||
def set_previous_controlnet(self, controlnet):
|
||||
self.previous_controlnet = controlnet
|
||||
return self
|
||||
|
||||
def copy(self):
|
||||
c = T2IAdapter(self.t2i_model, self.channels_in)
|
||||
c.cond_hint_original = self.cond_hint_original
|
||||
c.strength = self.strength
|
||||
return c
|
||||
|
||||
def cleanup(self):
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.cleanup()
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
|
||||
def get_control_models(self):
|
||||
out = []
|
||||
if self.previous_controlnet is not None:
|
||||
out += self.previous_controlnet.get_control_models()
|
||||
return out
|
||||
|
||||
def load_t2i_adapter(ckpt_path, model=None):
|
||||
t2i_data = load_torch_file(ckpt_path)
|
||||
cin = t2i_data['conv_in.weight'].shape[1]
|
||||
model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
|
||||
model_ad.load_state_dict(t2i_data)
|
||||
return T2IAdapter(model_ad, cin // 64)
|
||||
|
||||
def load_clip(ckpt_path, embedding_directory=None):
|
||||
clip_data = load_torch_file(ckpt_path)
|
||||
|
125
comfy/t2i_adapter/adapter.py
Normal file
125
comfy/t2i_adapter/adapter.py
Normal file
@ -0,0 +1,125 @@
|
||||
#taken from https://github.com/TencentARC/T2I-Adapter
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ldm.modules.attention import SpatialTransformer, BasicTransformerBlock
|
||||
|
||||
def conv_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D convolution module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.Conv1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.Conv2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.Conv3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
def avg_pool_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D average pooling module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.AvgPool1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.AvgPool2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.AvgPool3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
class Downsample(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
stride = 2 if dims != 3 else (1, 2, 2)
|
||||
if use_conv:
|
||||
self.op = conv_nd(
|
||||
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
||||
)
|
||||
else:
|
||||
assert self.channels == self.out_channels
|
||||
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
|
||||
super().__init__()
|
||||
ps = ksize//2
|
||||
if in_c != out_c or sk==False:
|
||||
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
|
||||
else:
|
||||
# print('n_in')
|
||||
self.in_conv = None
|
||||
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
|
||||
self.act = nn.ReLU()
|
||||
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
|
||||
if sk==False:
|
||||
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
|
||||
else:
|
||||
self.skep = None
|
||||
|
||||
self.down = down
|
||||
if self.down == True:
|
||||
self.down_opt = Downsample(in_c, use_conv=use_conv)
|
||||
|
||||
def forward(self, x):
|
||||
if self.down == True:
|
||||
x = self.down_opt(x)
|
||||
if self.in_conv is not None: # edit
|
||||
x = self.in_conv(x)
|
||||
|
||||
h = self.block1(x)
|
||||
h = self.act(h)
|
||||
h = self.block2(h)
|
||||
if self.skep is not None:
|
||||
return h + self.skep(x)
|
||||
else:
|
||||
return h + x
|
||||
|
||||
|
||||
class Adapter(nn.Module):
|
||||
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True):
|
||||
super(Adapter, self).__init__()
|
||||
self.unshuffle = nn.PixelUnshuffle(8)
|
||||
self.channels = channels
|
||||
self.nums_rb = nums_rb
|
||||
self.body = []
|
||||
for i in range(len(channels)):
|
||||
for j in range(nums_rb):
|
||||
if (i!=0) and (j==0):
|
||||
self.body.append(ResnetBlock(channels[i-1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
|
||||
else:
|
||||
self.body.append(ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
|
||||
self.body = nn.ModuleList(self.body)
|
||||
self.conv_in = nn.Conv2d(cin,channels[0], 3, 1, 1)
|
||||
|
||||
def forward(self, x):
|
||||
# unshuffle
|
||||
x = self.unshuffle(x)
|
||||
# extract features
|
||||
features = []
|
||||
x = self.conv_in(x)
|
||||
for i in range(len(self.channels)):
|
||||
for j in range(self.nums_rb):
|
||||
idx = i*self.nums_rb +j
|
||||
x = self.body[idx](x)
|
||||
features.append(x)
|
||||
|
||||
return features
|
0
models/t2i_adapter/put_t2i_adapter_models_here
Normal file
0
models/t2i_adapter/put_t2i_adapter_models_here
Normal file
33
nodes.py
33
nodes.py
@ -106,6 +106,21 @@ class VAEDecode:
|
||||
def decode(self, vae, samples):
|
||||
return (vae.decode(samples["samples"]), )
|
||||
|
||||
class VAEDecodeTiled:
|
||||
def __init__(self, device="cpu"):
|
||||
self.device = device
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "decode"
|
||||
|
||||
CATEGORY = "_for_testing"
|
||||
|
||||
def decode(self, vae, samples):
|
||||
return (vae.decode_tiled(samples["samples"]), )
|
||||
|
||||
class VAEEncode:
|
||||
def __init__(self, device="cpu"):
|
||||
self.device = device
|
||||
@ -277,6 +292,22 @@ class ControlNetApply:
|
||||
c.append(n)
|
||||
return (c, )
|
||||
|
||||
class T2IAdapterLoader:
|
||||
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
|
||||
t2i_adapter_dir = os.path.join(models_dir, "t2i_adapter")
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "t2i_adapter_name": (filter_files_extensions(recursive_search(s.t2i_adapter_dir), supported_pt_extensions), )}}
|
||||
|
||||
RETURN_TYPES = ("CONTROL_NET",)
|
||||
FUNCTION = "load_t2i_adapter"
|
||||
|
||||
CATEGORY = "loaders"
|
||||
|
||||
def load_t2i_adapter(self, t2i_adapter_name):
|
||||
t2i_path = os.path.join(self.t2i_adapter_dir, t2i_adapter_name)
|
||||
t2i_adapter = comfy.sd.load_t2i_adapter(t2i_path)
|
||||
return (t2i_adapter,)
|
||||
|
||||
class CLIPLoader:
|
||||
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
|
||||
@ -794,6 +825,8 @@ NODE_CLASS_MAPPINGS = {
|
||||
"ControlNetApply": ControlNetApply,
|
||||
"ControlNetLoader": ControlNetLoader,
|
||||
"DiffControlNetLoader": DiffControlNetLoader,
|
||||
"T2IAdapterLoader": T2IAdapterLoader,
|
||||
"VAEDecodeTiled": VAEDecodeTiled,
|
||||
}
|
||||
|
||||
CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
|
||||
|
Loading…
Reference in New Issue
Block a user